skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A simple strategy for calibrating the geometry of light sources
We present a methodology for calibrating multiple light source locations in 3D from images. The procedure involves the use of a novel calibration object that consists of three spheres at known relative positions. The process uses intensity images to find the positions of the light sources. We conducted experiments to locate light sources in 51 different positions in a laboratory setting. Our data shows that the vector from a point in the scene to a light source can be measured to within 2.7/spl plusmn/4/spl deg/ at /spl alpha/=.05 (6 percent relative) of its true direction and within 0.13/spl plusmn/.02 m at /spl alpha/=.05 (9 percent relative) of its true magnitude compared to empirically measured ground truth. Finally, we demonstrate how light source information is used for color correction.  more » « less
Award ID(s):
9724422
PAR ID:
10346790
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume:
23
Issue:
9
ISSN:
0162-8828
Page Range / eLocation ID:
1022 to 1027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0. 
    more » « less
  2. The lightness of an object is an intrinsic property that depends on its surface reflectance spectrum. The visual system estimates an object's lightness from the light reflected off its surface. However, the reflected light also depends on object extrinsic properties of the scene, such as the light source. For stable perception, the visual system needs to discount the variations due to the object extrinsic properties. We characterize this perceptual stability for variation in two spectral properties of the scene: the reflectance spectra of background objects and the intensity of light sources. We measure human observers’ thresholds of discriminating computer-generated images of 3D scenes based on the lightness of a spherical target object in the scene. We measured change in discrimination thresholds as we varied the reflectance spectra of the objects and the intensity of the light sources in the scene, both individually and simultaneously. For small amounts of extrinsic variations, the discrimination thresholds remained nearly constant indicating that the thresholds were dominated by observers’ intrinsic representation of lightness. As extrinsic variation increased, it started affecting observers’ lightness judgment and the thresholds increased. We estimated that the effects of extrinsic variations were comparable to observers’ intrinsic variation in the representation of object lightness. Moreover, for simultaneous variation of these spectral properties, the increase in threshold squared compared to the no-variation condition was a linear sum of the corresponding increase in threshold squared for the individual properties, indicating that the variations from these independent sources combine linearly. 
    more » « less
  3. null (Ed.)
    ABSTRACT For ground-based optical imaging with current CCD technology, the Poisson fluctuations in source and sky background photon arrivals dominate the noise budget and are readily estimated. Another component of noise, however, is the signal from the undetected population of stars and galaxies. Using injection of artifical galaxies into images, we demonstrate that the measured variance of galaxy moments (used for weak gravitational lensing measurements) in Dark Energy Survey (DES) images is significantly in excess of the Poisson predictions, by up to 30 per cent, and that the background sky levels are overestimated by current software. By cross-correlating distinct images of ‘empty’ sky regions, we establish that there is a significant image noise contribution from undetected static sources (US), which, on average, are mildly resolved at DES resolution. Treating these US as a stationary noise source, we compute a correction to the moment covariance matrix expected from Poisson noise. The corrected covariance matrix matches the moment variances measured on the injected DES images to within 5 per cent. Thus, we have an empirical method to statistically account for US in weak lensing measurements, rather than requiring extremely deep sky simulations. We also find that local sky determinations can remove most of the bias in flux measurements, at a small penalty in additional, but quantifiable, noise. 
    more » « less
  4. Abstract. Mercury (Hg) is a global atmospheric pollutant. In its oxidized form (HgII), it can readily deposit to ecosystems, where it may bioaccumulate and cause severe health effects. High HgII concentrations are reported in the free troposphere, but spatiotemporal data coverage is limited. Underestimation of HgII by commercially available measurement systems hinders quantification of Hg cycling and fate. During spring–summer 2021 and 2022, we measured elemental (Hg0) and oxidized Hg using a calibrated dual-channel system alongside trace gases, aerosol properties, and meteorology at the high-elevation Storm Peak Laboratory (SPL) above Steamboat Springs, Colorado. Oxidized Hg concentrations displayed diel and episodic behavior similar to previous work at SPL but were approximately 3 times higher in magnitude due to improved measurement accuracy. We identified 18 multi-day events of elevated HgII (mean enhancement of 36 pg m−3) that occurred in dry air (mean ± SD of relative humidity = 32 ± 16 %). Lagrangian particle dispersion model (HYSPLIT–STILT, Hybrid Single-Particle Lagrangian Integrated Trajectory–Stochastic Time-Inverted Lagrangian Transport) 10 d back trajectories showed that the majority of transport prior to events occurred in the low to middle free troposphere. Oxidized Hg was anticorrelated with Hg0 during events, with an average (± SD) slope of −0.39 ± 0.14. We posit that event HgII resulted from upwind oxidation followed by deposition or cloud uptake during transport. Meanwhile, sulfur dioxide measurements verified that three upwind coal-fired power plants did not influence ambient Hg at SPL. Principal component analysis showed HgII consistently inversely related to Hg0 and generally not associated with combustion tracers, confirming oxidation in the clean, dry free troposphere as its primary origin. 
    more » « less
  5. ABSTRACT We report on the search for optical counterparts to IceCube neutrino alerts released between 2016 April and 2021 August with the All-Sky Automated Survey for SuperNovae (ASAS-SN). Despite the discovery of a diffuse astrophysical high-energy neutrino flux in 2013, the source of those neutrinos remains largely unknown. Since 2016, IceCube has published likely astrophysical neutrinos as public real-time alerts. Through a combination of normal survey and triggered target-of-opportunity observations, ASAS-SN obtained images within 1 h of the neutrino detection for 20 per cent (11) of all observable IceCube alerts and within one day for another 57 per cent (32). For all observable alerts, we obtained images within at least two weeks from the neutrino alert. ASAS-SN provides the only optical follow-up for about 17 per cent of IceCube’s neutrino alerts. We recover the two previously claimed counterparts to neutrino alerts, the flaring-blazar TXS 0506 + 056 and the tidal disruption event AT2019dsg. We investigate the light curves of previously detected transients in the alert footprints, but do not identify any further candidate neutrino sources. We also analysed the optical light curves of Fermi 4FGL sources coincident with high-energy neutrino alerts, but do not identify any contemporaneous flaring activity. Finally, we derive constraints on the luminosity functions of neutrino sources for a range of assumed evolution models. 
    more » « less