skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "2022 USENIX Annual Technical Conference"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 2022 USENIX Annual Technical Conference (Ed.)
    Caches are pervasively used in content delivery networks (CDNs) to serve requests close to users and thus reduce content access latency. However, designing latency-optimal caches are challenging in the presence of delayed hits, which occur in high-throughput systems when multiple requests for the same content occur before the content is fetched from the remote server. In this paper, we propose a novel timer-based mechanism that provably optimizes the mean caching latency, providing a theoretical basis for the understanding and design of latency-aware (LA) caching that is fundamental to content delivery in latency-sensitive systems. Our timer-based model is able to derive a simple ranking function which quickly informs us the priority of a content for our goal to minimize latency. Based on that we propose a lightweight latency-aware caching algorithm named LA-Cache. We have implemented a prototype within Apache Traffic Server, a popular CDN server. The latency achieved by our implementations agrees closely with theoretical predictions of our model. Our experimental results using production traces show that LA-Cache consistently reduces latencies by 5%-15% compared to state-of-the-art methods depending on the backend RTTs. 
    more » « less