skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Aichholzer, Oswin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Free, publicly-accessible full text available June 20, 2026
  2. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Aichholzer, Oswin; Wang, Haitao (Ed.)
    The Betti tables of a multigraded module encode the grades at which there is an algebraic change in the module. Multigraded modules show up in many areas of pure and applied mathematics, and in particular in topological data analysis, where they are known as persistence modules, and where their Betti tables describe the places at which the homology of filtered simplicial complexes changes. Although Betti tables of singly and bigraded modules are already being used in applications of topological data analysis, their computation in the bigraded case (which relies on an algorithm that is cubic in the size of the filtered simplicial complex) is a bottleneck when working with large datasets. We show that, in the special case of 0-dimensional homology (relevant for clustering and graph classification) Betti tables of bigraded modules can be computed in log-linear time. We also consider the problem of computing minimal presentations, and show that minimal presentations of 0-dimensional persistent homology can be computed in quadratic time, regardless of the grading poset. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Aichholzer, Oswin; Wang, Haitao (Ed.)
    A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Aichholzer, Oswin; Wang, Haitao (Ed.)
    For fixed d ≥ 3, we construct subsets of the d-dimensional lattice cube [n]^d of size n^{3/(d + 1) - o(1)} with no d+2 points on a sphere or a hyperplane. This improves the previously best known bound of Ω(n^{1/(d-1)}) due to Thiele from 1995. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We show that a variant of the continuous Fréchet distance between polygonal curves can be computed using essentially the same algorithm used to solve the discrete version. The new variant is not necessarily monotone, but this shortcoming can be easily handled via refinement. Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fréchet distance (i.e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in practice, takes near linear time on many inputs. The new morphing has the property that the leash is always as short as possible. These matchings/morphings are more natural, and are better than the ones computed by standard algorithms - in particular, they handle noise more graciously. This should make the Fréchet distance more useful for real world applications. We implemented the new algorithm, and various strategies to obtain fast practical performance. We performed extensive experiments with our new algorithm, and released publicly available (and easily installable and usable) Julia and Python packages. In particular, the Julia implementation, for computing the regular Fréchet distance, seems to be {significantly faster} than other currently available implementations. See Table 2.2. Our algorithms can be used to compute the almost-exact Fréchet distance between polygonal curves. Implementations and numerous examples are available here: https://frechet.xyz. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026