Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fernández_Robledo, José A (Ed.)Vibrio parahaemolyticus(VP) is a bacterial pathogen found in brackish and marine water that infects many marine organisms, such as oysters and shrimp. Consumption of raw or undercooked seafood contaminated withV. parahaemolyticusis a primary cause of seafood-borne gastroenteritis in humans. Due to increasing ocean temperatures,V. parahaemolyticuscontamination of oyster beds in the United States has spread up the east and west coasts to the northern-most states. Promising new research is exploring the isolation of bacteriophages againstV. parahaemolyticuswith a long-term goal to possibly decontaminate oyster beds, thereby expanding the harvest season and allowing for safer consumption of seafood. In this study, store-bought oysters harvested from the Chesapeake Bay in Virginia were used to isolate four bacteriophages with activity against a specificV. parahaemolyticusstrain. A standard double agar overlay plaque assay was used to identify phage activity. After phage isolation, the genomes were sequenced, and transmission electron microscopy (TEM) was performed to visualize the virions. The genomes and TEM images revealed four distinct phages. Three of the phages are distinct isolates that exhibit podovirus-like morphology with short tails and genome sizes of approximately 43 kbp. One phage has siphovirus-like morphology and is a mid-sized tailed phage with a genome size of 80 kbp. Although spot tests performed with the oyster homogenates on up to 10 differentV. parahaemolyticusstrains recovered activity across a wide range of hosts, plaque assays with the isolated phages showed limited host range. Future work will be necessary to determine the viability of using the bacteriophages for elimination ofV. parahaemolyticusin harvested oysters, treatment of aquaculture seed and spat, and/or the environment.more » « lessFree, publicly-accessible full text available December 29, 2026
-
Fernández_Robledo, José A (Ed.)Turbulence and sound are important cues for oyster reef larval recruitment. Numerous studies have found a relationship between turbulence intensity and swimming behaviors of marine larvae, while others have documented the importance of sounds in enhancing larval recruitment to oyster reefs. However, the relationship between turbulence and the reef soundscape is not well understood. In this study we made side-by-side acoustic Doppler velocimeter turbulence measurements and hydrophone soundscape recordings over 2 intertidal oyster reefs (1 natural and 1 restored) and 1 adjacent bare mudflat as a reference. Sound pressure levels (SPL) were similar across all three sites, although SPL > 2000 Hz was highest at the restored reef, likely due to its larger area that contained a greater number of sound-producing organisms. Flow noise (FN), defined as the mean of pressure fluctuations recorded by the hydrophone atf< 100 Hz, was significantly related to mean flow speed, turbulent kinetic energy, and turbulence dissipation rate (ε), agreeing with theoretical calculations for turbulence. Our results also show a similar relationship between ε andFNto what has been previously reported for ε vs. downward larval swimming velocity (wb), with bothFNandwbdemonstrating rapid growth at ε > 0.1 cm2s−3. These results suggest that reef turbulence and sounds may attract oyster larvae in complementary and synergistic ways.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Fernández_Robledo, José A (Ed.)Mytilus edulisis a commercially and ecologically important species found along the east coast of the United States. Ecologically,M.edulisimproves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms—impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.more » « less
An official website of the United States government
