skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Kpotufe, Samor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Belkin, Mikhail; Kpotufe, Samor (Ed.)
    We present an $$e^{O(p)} (\log \ell) / (\log \log \ell)$$-approximation algorithm for socially fair clustering with the $$\ell_p$$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $$\ell$$ groups. The goal is to find a $$k$$-medians, $$k$$-means, or, more generally, $$\ell_p$$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $$k$$ centers $$C$$ so as to minimize the maximum over all groups $$j$$ of $$\sum_{u \text{ in group } j} d(u, C)^p$$. The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves and generalizes their $$O(\ell)$$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $$\Omega(\ell)$$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $$\Theta((\log \ell) / (\log \log \ell))$$ for a fixed p. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. (2021). 
    more » « less