 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

10
 Availability

10
 Author / Contributor
 Filter by Author / Creator


Makarychev, Yury (1)

Vakilian, Ali (1)

#Tyler Phillips, Kenneth E. (0)

& Ahmed, Khadija. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Attari, S. Z. (0)

& Ayala, O. (0)

& Babbitt, W. (0)

& Baek, Y. (0)

& Bahabry, Ahmed. (0)

& Bai, F. (0)

& Balasubramanian, R. (0)

& BarthCohen, L. (0)

& Bassett, L. (0)

& Beaulieu, C (0)

& Bein, E. (0)

 Filter by Editor


Belkin, Mikhail (1)

Kpotufe, Samor (1)

& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Higgins, A. (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

:Chaosong Huang, Gang Lu (0)

A. Beygelzimer (0)

A. E. Lischka, E.B. Dyer (0)

A. Ghate, K. Krishnaiyer (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Belkin, Mikhail ; Kpotufe, Samor (Ed.)We present an $e^{O(p)} (\log \ell) / (\log \log \ell)$approximation algorithm for socially fair clustering with the $\ell_p$objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $\ell$ groups. The goal is to find a $k$medians, $k$means, or, more generally, $\ell_p$clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $\sum_{u \text{ in group } j} d(u, C)^p$. The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves and generalizes their $O(\ell)$approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $\Omega(\ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $\Theta((\log \ell) / (\log \log \ell))$ for a fixed p. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. (2021).