skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Lacarbonara, Walter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lacarbonara, Walter (Ed.)
    This work proposes a computational approach that has its roots in the early ideas of local Lyapunov exponents, yet, it offers new perspectives toward analyzing these problems. The method of interest, namely abstract dynamics, is an indirect quantitative measure of the variations of the governing vector fields based on the principles of linear systems. The examples in this work, ranging from simple limit cycles to chaotic attractors, are indicative of the new interpretation that this new perspective can offer. The presented results can be exploited in the structure of algorithms (most prominently machine learning algorithms) that are designed to estimate the complex behavior of nonlinear systems, even chaotic attractors, within their horizon of predictability. 
    more » « less