skip to main content


Search for: All records

Editors contains: "Missaoui, Rokia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atzmuller, Martin ; Coscia, Michele ; Missaoui, Rokia (Ed.)
    Influence diffusion has been central to the study of the propagation of information in social networks, where influence is typically modeled as a binary property of entities: influenced or not influenced. We introduce the notion of attitude, which, as described in social psychology, is the degree by which an entity is influenced by the information. We present an information diffusion model that quantifies the degree of influence, i.e., attitude of individuals, in a social network. With this model, we formulate and study the attitude maximization problem. We prove that the function for computing attitude is monotonic and sub-modular, and the attitude maximization problem is NP-Hard. We present a greedy algorithm for maximization with an approximation guarantee of $(1-1/e)$. Using the same model, we also introduce the notion of ``actionable'' attitude with the aim to study the scenarios where attaining individuals with high attitude is objectively more important than maximizing the attitude of the entire network. We show that the function for computing actionable attitude, unlike that for computing attitude, is non-submodular but is approximately submodular. We present an approximation algorithm for maximizing actionable attitude in a network. We experimentally evaluated our algorithms and studied empirical properties of the attitude of nodes in the network such as spatial and value distribution of high attitude nodes. 
    more » « less