skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Measuring the Impact of Influence on Individuals: Roadmap to Quantifying Attitude
Influence diffusion has been central to the study of the propagation of information in social networks, where influence is typically modeled as a binary property of entities: influenced or not influenced. We introduce the notion of attitude, which, as described in social psychology, is the degree by which an entity is influenced by the information. We present an information diffusion model that quantifies the degree of influence, i.e., attitude of individuals, in a social network. With this model, we formulate and study the attitude maximization problem. We prove that the function for computing attitude is monotonic and sub-modular, and the attitude maximization problem is NP-Hard. We present a greedy algorithm for maximization with an approximation guarantee of $(1-1/e)$. Using the same model, we also introduce the notion of ``actionable'' attitude with the aim to study the scenarios where attaining individuals with high attitude is objectively more important than maximizing the attitude of the entire network. We show that the function for computing actionable attitude, unlike that for computing attitude, is non-submodular but is approximately submodular. We present an approximation algorithm for maximizing actionable attitude in a network. We experimentally evaluated our algorithms and studied empirical properties of the attitude of nodes in the network such as spatial and value distribution of high attitude nodes.  more » « less
Award ID(s):
1934884 1849053
PAR ID:
10221649
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Atzmuller, Martin; Coscia, Michele; Missaoui, Rokia
Date Published:
Journal Name:
{IEEE/ACM} International Conference on Advances in Social Networks Analysis and Mining, {ASONAM}
Page Range / eLocation ID:
227--231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Diffusion of information in social network has been the focus of intense research in the recent past decades due to its significant impact in shaping public discourse through group/individual influence. Existing research primarily models influence as a binary property of entities: influenced or not influenced. While this is a useful abstraction, it discards the notion of degree of influence, i.e., certain individuals may be influenced ``more'' than others. We introduce the notion of \emph{attitude}, which, as described in social psychology, is the degree by which an entity is influenced by the information. Intuitively, attitude captures the number of distinct neighbors of an entity influencing the latter. We present an information diffusion model (AIC model) that quantifies the degree of influence, i.e., attitude of individuals, in a social network. With this model, we formulate and study attitude maximization problem. We prove that the function for computing attitude is monotonic and sub-modular, and the attitude maximization problem is NP-Hard. We present a greedy algorithm for maximization with an approximation guarantee of $(1-1/e)$. In the context of AIC model, we study two problems, with the aim to investigate the scenarios where attaining individuals with high attitude is objectively more important than maximizing the attitude of the entire network. In the first problem, we introduce the notion of \emph{actionable attitude}; intuitively, individuals with actionable attitude are likely to ``act'' on their attained attitude. We show that the function for computing actionable attitude, unlike that for computing attitude, is non-submodular and however is \emph{approximately submodular}. We present approximation algorithm for maximizing actionable attitude in a network. In the second problem, we consider identifying the number of individuals in the network with attitude above a certain value, a threshold. In this context, the function for computing the number of individuals with attitude above a given threshold induced by a seed set is \emph{neither submodular nor supermodular}. We present heuristics for realizing the solution to the problem. We experimentally evaluated our algorithms and studied empirical properties of the attitude of nodes in network such as spatial and value distribution of high attitude nodes. 
    more » « less
  2. In many real-world applications such as social network analysis and online advertising/marketing, one of the most important and popular problems is called influence maximization (IM), which finds a set of k seed users that maximize the expected number of influenced user nodes. In practice, however, maximizing the number of influenced nodes may be far from satisfactory for real applications such as opinion promotion and collective buying. In this paper, we explore the importance of stability and triangles in social networks, and formulate a novel problem in the influence spread scenario, named triangular stability maximization , over social networks, and generalize it to a general triangle influence maximization problem, which is proved to be NP-hard. We develop an efficient reverse influence sampling (RIS) based framework for the triangle IM with theoretical guarantees. To enable unbiased estimators, it demands probabilistic sampling of triangles, that is, sampling triangles according to their probabilities. We propose an edge-based triple sampling approach, which is exactly equivalent to probabilistic sampling and avoids costly triangle enumeration and materialization. We also design several pruning and reduction techniques, as well as a cost-model-guided heuristic algorithm. Extensive experiments and a case study over real-world graphs confirm the effectiveness of our proposed algorithms and the superiority of triangular stability maximization and triangle influence maximization. 
    more » « less
  3. Crowdsourcing has become an efficient paradigm to utilize human intelligence to perform tasks that are challenging for machines. Many incentive mechanisms for crowdsourcing systems have been proposed. However, most of existing incentive mechanisms assume that there are sufficient participants to perform crowdsourcing tasks. In large-scale crowdsourcing scenarios, this assumption may be not applicable. To address this issue, we diffuse the crowdsourcing tasks in social network to increase the number of participants. To make the task diffusion more applicable to crowdsourcing system, we enhance the classic Independent Cascade model so the influence is strongly connected with both the types and topics of tasks. Based on the tailored task diffusion model, we formulate the Budget Feasible Task Diffusion ( BFTD ) problem for maximizing the value function of platform with constrained budget. We design a parameter estimation algorithm based on Expectation Maximization algorithm to estimate the parameters in proposed task diffusion model. Benefitting from the submodular property of the objective function, we apply the budget-feasible incentive mechanism, which satisfies desirable properties of computational efficiency, individual rationality, budget-feasible, truthfulness, and guaranteed approximation, to stimulate the task diffusers. The simulation results based on two real-world datasets show that our incentive mechanism can improve the number of active users and the task completion rate by 9.8% and 11%, on average. 
    more » « less
  4. The study of influence maximization in social networks has largely ignored disparate effects these algorithms might have on the individuals contained in the social network. Individuals may place a high value on receiving information, e.g. job openings or advertisements for loans. While well-connected individuals at the center of the network are likely to receive the information that is being distributed through the network, poorly connected individuals are systematically less likely to receive the information, producing a gap in access to the information between individuals. In this work, we study how best to spread information in a social network while minimizing this access gap. We propose to use the maximin social welfare function as an objective function, where we maximize the minimum probability of receiving the information under an intervention. We prove that in this setting this welfare function constrains the access gap whereas maximizing the expected number of nodes reached does not. We also investigate the difficulties of using the maximin, and present hardness results and analysis for standard greedy strategies. Finally, we investigate practical ways of optimizing for the maximin, and give empirical evidence that a simple greedy-based strategy works well in practice. 
    more » « less
  5. This paper considers the problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. The main result is the first 1/2-approximation algorithm for continuous submodular function maximization; this approximation factor of 1/2 is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular functions are also coordinate-wise concave along all coordinates, we provide a different 1 2-approximation algorithm that runs in quasi-linear time. 
    more » « less