skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Muhammad, Sher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Muhammad, Sher (Ed.)
    Greenland’s glaciers have been retreating, thinning and accelerating since the mid-1990s, with the mass loss from the Greenland Ice Sheet (GrIS) now being the largest contributor to global sea level rise. Monitoring changes in glacier dynamics using in-situ or remote sensing methods has been and remains therefore crucial to improve our understanding of glaciological processes and the response of glaciers to changes in climate. Over the past two decades, significant advances in technology have provided improvements in the way we observe glacier behavior and have helped to reduce uncertainties in future projections. This review focuses on advances in in-situ monitoring of glaciological processes, but also discusses novel methods in satellite remote sensing. We further highlight gaps in observing, measuring and monitoring glaciers in Greenland, which should be addressed in order to improve our understanding of glacier dynamics and to reduce in uncertainties in future sea level rise projections. In addition, we review coordination and inclusivity of science conducted in Greenland and provide suggestion that could foster increased collaboration and co-production. 
    more » « less