Abstract The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise.
more »
« less
Advances in monitoring glaciological processes in Kalallit Nunaat (Greenland) over the past decades
Greenland’s glaciers have been retreating, thinning and accelerating since the mid-1990s, with the mass loss from the Greenland Ice Sheet (GrIS) now being the largest contributor to global sea level rise. Monitoring changes in glacier dynamics using in-situ or remote sensing methods has been and remains therefore crucial to improve our understanding of glaciological processes and the response of glaciers to changes in climate. Over the past two decades, significant advances in technology have provided improvements in the way we observe glacier behavior and have helped to reduce uncertainties in future projections. This review focuses on advances in in-situ monitoring of glaciological processes, but also discusses novel methods in satellite remote sensing. We further highlight gaps in observing, measuring and monitoring glaciers in Greenland, which should be addressed in order to improve our understanding of glacier dynamics and to reduce in uncertainties in future sea level rise projections. In addition, we review coordination and inclusivity of science conducted in Greenland and provide suggestion that could foster increased collaboration and co-production.
more »
« less
- Award ID(s):
- 2020447
- PAR ID:
- 10548860
- Editor(s):
- Muhammad, Sher
- Publisher / Repository:
- PLOS Climate
- Date Published:
- Journal Name:
- PLOS Climate
- Volume:
- 3
- Issue:
- 4
- ISSN:
- 2767-3200
- Page Range / eLocation ID:
- e0000379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.more » « less
-
Previous studies have interpreted Last Interglacial (LIG;∼129–116 ka) sea‐level estimates in multiple different ways to calibrate projections of future Antarctic ice‐sheet (AIS) mass loss and associated sea‐level rise. This study systematically explores the extent to which LIG constraints could inform future Antarctic contributions to sea‐level rise. We develop a Gaussian process emulator of an ice‐sheet model to produce continuous probabilistic projections of Antarctic sea‐level contributions over the LIG and a future high‐emissions scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG constraints to find associated likelihoods of model parameterizations. LIG estimates inform both the probability of past and future ice‐sheet instabilities and projections of future sea‐level rise through 2150. Although best‐available LIG estimates do not meaningfully constrain Antarctic mass loss projections or physical processes until 2060, they become increasingly informative over the next 130 years. Uncertainties of up to 50 cm remain in future projections even if LIG Antarctic mass loss is precisely known (±5 cm), indicating that there is a limit to how informative the LIG could be for ice‐sheet model future projections. The efficacy of LIG constraints on Antarctic mass loss also depends on assumptions about the Greenland ice sheet and LIG sea‐level chronology. However, improved field measurements and understanding of LIG sea levels still have potential to improve future sea‐level projections, highlighting the importance of continued observational efforts.more » « less
-
Abstract Feedbacks between ice melt, glacier flow and ocean circulation can rapidly accelerate ice loss at tidewater glaciers and alter projections of sea-level rise. At the core of these projections is a model for ice melt that neglects the fact that glacier ice contains pressurized bubbles of air due to its formation from compressed snow. Current model estimates can underpredict glacier melt at termini outside the region influenced by the subglacial discharge plume by a factor of 10–100 compared with observations. Here we use laboratory-scale experiments and theoretical arguments to show that the bursting of pressurized bubbles from glacier ice could be a source of this discrepancy. These bubbles eject air into the seawater, delivering additional buoyancy and impulses of turbulent kinetic energy to the boundary layer, accelerating ice melt. We show that real glacier ice melts 2.25 times faster than clear bubble-free ice when driven by natural convection in a laboratory setting. We extend these results to the geophysical scale to show how bubble dynamics contribute to ice melt from tidewater glaciers. Consequently, these results could increase the accuracy of modelled predictions of ice loss to better constrain sea-level rise projections globally.more » « less
-
Abstract The ice sheets covering Antarctica and Greenland present the greatest uncertainty in, and largest potential contribution to, future sea level rise. The uncertainty arises from a paucity of suitable observations covering the full range of ice sheet behaviors, incomplete understanding of the influences of diverse processes, and limitations in defining key boundary conditions for the numerical models. To investigate the impact of these uncertainties on ice sheet projections we undertook a structured expert judgement study. Here, we interrogate the findings of that study to identify the dominant drivers of uncertainty in projections and their relative importance as a function of ice sheet and time. We find that for the 21st century, Greenland surface melting, in particular the role of surface albedo effects, and West Antarctic ice dynamics, specifically the role of ice shelf buttressing, dominate the uncertainty. The importance of these effects holds under both a high‐end 5°C global warming scenario and another that limits global warming to 2°C. During the 22nd century the dominant drivers of uncertainty shift. Under the 5°C scenario, East Antarctic ice dynamics dominate the uncertainty in projections, driven by the possible role of ice flow instabilities. These dynamic effects only become dominant, however, for a temperature scenario above the Paris Agreement 2°C target and beyond 2100. Our findings identify key processes and factors that need to be addressed in future modeling and observational studies in order to reduce uncertainties in ice sheet projections.more » « less