skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Editors contains: "Prabhakaran, Manoj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bhargavan, Karthikeyan; Oswald, Elisabeth; Prabhakaran, Manoj (Ed.)
    We introduce the Multi-Base Discrete Logarithm (MBDL) problem. We use this to give reductions, for Schnorr and Okamoto identification and signatures, that are non-rewinding and, by avoiding the notorious square-root loss, tighter than the classical ones from the Discrete Logarithm (DL) problem. This fills a well-known theoretical and practical gap regarding the security of these schemes. We show that not only is the MBDL problem hard in the generic group model, but with a bound that matches that for DL, so that our new reductions justify the security of these primitives for group sizes in actual use. 
    more » « less
  2. Bhargavan, Karthikeyan; Oswald, Elisabeth; Prabhakaran, Manoj (Ed.)
    This paper formulates, and studies, the problem of property transference in dual-mode NIZKs. We say that a property P (such as soundness, ZK or WI) transfers, if, one of the modes having P allows us to prove that the other mode has the computational analogue of P, as a consequence of nothing but the indistinguishability of the CRSs in the two modes. Our most interesting finding is negative; we show by counter-example that the form of soundness that seems most important for applications fails to transfer. On the positive side, we develop a general framework that allows us to show that zero knowledge, witness indistinguishability, extractability and weaker forms of soundness do transfer. Our treatment covers conventional, designated-verifier and designated-prover NIZKs in a unified way. 
    more » « less
  3. Bhargavan, Karthikeyan; Oswald, Elisabeth; Prabhakaran, Manoj (Ed.)
    This paper gives the first definitions and constructions for incremental pseudo-random functions (IPRFs). The syntax is nonce based. (Algorithms are deterministic but may take as input a non-repeating quantity called a nonce.) The design approach is modular. First, given a scheme secure only in the single-document setting (there is just one document on which incremental updates are being performed) we show how to generically build a scheme that is secure in the more realistic multi-document setting (there are many documents, and they are simultaneously being incrementally updated). Then we give a general way to build an IPRF from (1) an incremental hash function with weak collision resistance properties and (2) a symmetric encryption scheme. (This adapts the classic Carter-Wegman paradigm used to build message authentication schemes in the non-incremental setting.) This leads to many particular IPRFs. Our work has both practical and theoretical motivation and value: Incremental PRFs bring the benefits of incrementality to new applications (such as incremental key derivation), and the movement from randomized or stateful schemes to nonce based ones, and from UF (unforgeability) to PRF security, bring incremental symmetric cryptography up to speed with the broader field of symmetric cryptography itself. 
    more » « less