skip to main content


Search for: All records

Editors contains: "Slivovsky, Friedrich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mahajan, Meena ; Slivovsky, Friedrich (Ed.)
    Dynamical solvers for combinatorial optimization are usually based on 2superscript{nd} degree polynomial interactions, such as the Ising model. These exhibit high success for problems that map naturally to their formulation. However, SAT requires higher degree of interactions. As such, these quadratic dynamical solvers (QDS) have shown poor solution quality due to excessive auxiliary variables and the resulting increase in search-space complexity. Thus recently, a series of cubic dynamical solver (CDS) models have been proposed for SAT and other problems. We show that such problem-agnostic CDS models still perform poorly on moderate to large problems, thus motivating the need to utilize SAT-specific heuristics. With this insight, our contributions can be summarized into three points. First, we demonstrate that existing make-only heuristics perform poorly on scale-free, industrial-like problems when integrated into CDS. This motivates us to utilize break counts as well. Second, we derive a relationship between make/break and the CDS formulation to efficiently recover break counts. Finally, we utilize this relationship to propose a new make/break heuristic and combine it with a state-of-the-art CDS which is projected to solve SAT problems several orders of magnitude faster than existing software solvers. 
    more » « less
  2. Mahajan, Meena ; Slivovsky, Friedrich (Ed.)
    Computing many useful properties of Boolean formulas, such as their weighted or unweighted model count, is intractable on general representations. It can become tractable when formulas are expressed in a special form, such as the decision-decomposable, negation normal form (dec-DNNF) . Knowledge compilation is the process of converting a formula into such a form. Unfortunately existing knowledge compilers provide no guarantee that their output correctly represents the original formula, and therefore they cannot validate a model count, or any other computed value. We present Partitioned-Operation Graphs (POGs), a form that can encode all of the representations used by existing knowledge compilers. We have designed CPOG, a framework that can express proofs of equivalence between a POG and a Boolean formula in conjunctive normal form (CNF). We have developed a program that generates POG representations from dec-DNNF graphs produced by the state-of-the-art knowledge compiler D4, as well as checkable CPOG proofs certifying that the output POGs are equivalent to the input CNF formulas. Our toolchain for generating and verifying POGs scales to all but the largest graphs produced by D4 for formulas from a recent model counting competition. Additionally, we have developed a formally verified CPOG checker and model counter for POGs in the Lean 4 proof assistant. In doing so, we proved the soundness of our proof framework. These programs comprise the first formally verified toolchain for weighted and unweighted model counting. 
    more » « less
  3. Mahajan, Meena ; Slivovsky, Friedrich (Ed.)
    Extended resolution shows that auxiliary variables are very powerful in theory. However, attempts to exploit this potential in practice have had limited success. One reasonably effective method in this regard is bounded variable addition (BVA), which automatically reencodes formulas by introducing new variables and eliminating clauses, often significantly reducing formula size. We find motivating examples suggesting that the performance improvement caused by BVA stems not only from this size reduction but also from the introduction of effective auxiliary variables. Analyzing specific packing-coloring instances, we discover that BVA is fragile with respect to formula randomization, relying on variable order to break ties. With this understanding, we augment BVA with a heuristic for breaking ties in a structured way. We evaluate our new preprocessing technique, Structured BVA (SBVA), on more than 29 000 formulas from previous SAT competitions and show that it is robust to randomization. In a simulated competition setting, our implementation outperforms BVA on both randomized and original formulas, and appears to be well-suited for certain families of formulas. 
    more » « less