skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Varol, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leonardis, A; Ricci, E; Roth, S; Russakovsky, O; Sattler, T; Varol, G (Ed.)
    Embodied agents must detect and localize objects of interest, e.g. traffic participants for self-driving cars. Supervision in the form of bounding boxes for this task is extremely expensive. As such, prior work has looked at unsupervised instance detection and segmentation, but in the absence of annotated boxes, it is unclear how pixels must be grouped into objects and which objects are of interest. This results in over-/under- segmentation and irrelevant objects. Inspired by human visual system and practical applications, we posit that the key missing cue for un- supervised detection is motion: objects of interest are typically mobile objects that frequently move and their motions can specify separate in- stances. In this paper, we propose MOD-UV, a Mobile Object Detector learned from Unlabeled Videos only. We begin with instance pseudo- labels derived from motion segmentation, but introduce a novel training paradigm to progressively discover small objects and static-but-mobile objects that are missed by motion segmentation. As a result, though only learned from unlabeled videos, MOD-UV can detect and segment mo- bile objects from a single static image. Empirically, we achieve state-of- the-art performance in unsupervised mobile object detection on Waymo Open, nuScenes, and KITTI Datasets without using any external data or supervised models. Code is available at github.com/YihongSun/MOD-UV. 
    more » « less