Embodied agents must detect and localize objects of interest, e.g. traffic participants for self-driving cars. Supervision in the form of bounding boxes for this task is extremely expensive. As such, prior work has looked at unsupervised instance detection and segmentation, but in the absence of annotated boxes, it is unclear how pixels must be grouped into objects and which objects are of interest. This results in over-/under- segmentation and irrelevant objects. Inspired by human visual system and practical applications, we posit that the key missing cue for un- supervised detection is motion: objects of interest are typically mobile objects that frequently move and their motions can specify separate in- stances. In this paper, we propose MOD-UV, a Mobile Object Detector learned from Unlabeled Videos only. We begin with instance pseudo- labels derived from motion segmentation, but introduce a novel training paradigm to progressively discover small objects and static-but-mobile objects that are missed by motion segmentation. As a result, though only learned from unlabeled videos, MOD-UV can detect and segment mo- bile objects from a single static image. Empirically, we achieve state-of- the-art performance in unsupervised mobile object detection on Waymo Open, nuScenes, and KITTI Datasets without using any external data or supervised models. Code is available at github.com/YihongSun/MOD-UV.
more »
« less
MOD-UV: Learning Mobile Object Detectors from Unlabeled Videos
Embodied agents must detect and localize objects of interest, e.g. traffic participants for self-driving cars. Supervision in the form of bounding boxes for this task is extremely expensive. As such, prior work has looked at unsupervised instance detection and segmentation, but in the absence of annotated boxes, it is unclear how pixels must be grouped into objects and which objects are of interest. This results in over-/under- segmentation and irrelevant objects. Inspired by human visual system and practical applications, we posit that the key missing cue for un- supervised detection is motion: objects of interest are typically mobile objects that frequently move and their motions can specify separate in- stances. In this paper, we propose MOD-UV, a Mobile Object Detector learned from Unlabeled Videos only. We begin with instance pseudo- labels derived from motion segmentation, but introduce a novel training paradigm to progressively discover small objects and static-but-mobile objects that are missed by motion segmentation. As a result, though only learned from unlabeled videos, MOD-UV can detect and segment mo- bile objects from a single static image. Empirically, we achieve state-of- the-art performance in unsupervised mobile object detection on Waymo Open, nuScenes, and KITTI Datasets without using any external data or supervised models. Code is available at github.com/YihongSun/MOD-UV.
more »
« less
- Award ID(s):
- 2144117
- PAR ID:
- 10566021
- Editor(s):
- Leonardis, A; Ricci, E; Roth, S; Russakovsky, O; Sattler, T; Varol, G
- Publisher / Repository:
- ECCV 2024
- Date Published:
- Volume:
- 15091
- ISBN:
- 978-3-031-73414-4
- Format(s):
- Medium: X
- Location:
- Milan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unsupervised monocular depth estimation techniques have demonstrated encouraging results but typically assume that the scene is static. These techniques suffer when trained on dynamical scenes, where apparent object motion can equally be explained by hypothesizing the object's independent motion, or by altering its depth. This ambiguity causes depth estimators to predict erroneous depth for moving objects. To resolve this issue, we introduce Dynamo-Depth, an unifying approach that disambiguates dynamical motion by jointly learning monocular depth, 3D independent flow field, and motion segmentation from unlabeled monocular videos. Specifically, we offer our key insight that a good initial estimation of motion segmentation is sufficient for jointly learning depth and independent motion despite the fundamental underlying ambiguity. Our proposed method achieves state-of-the-art performance on monocular depth estimation on Waymo Open and nuScenes Dataset with significant improvement in the depth of moving objects. Code and additional results are available at https://dynamo-depth.github.io.more » « less
-
Most existing methods handle cell instance segmentation problems directly without relying on additional detection boxes. These methods generally fails to separate touching cells due to the lack of global understanding of the objects. In contrast, box-based instance segmentation solves this problem by combining object detection with segmentation. However, existing methods typically utilize anchor box-based detectors, which would lead to inferior instance segmentation performance due to the class imbalance issue. In this paper, we propose a new box-based cell instance segmentation method. In particular, we first detect the five pre-defined points of a cell via keypoints detection. Then we group these points according to a keypoint graph and subsequently extract the bounding box for each cell. Finally, cell segmentation is performed on feature maps within the bounding boxes. We validate our method on two cell datasets with distinct object shapes, and empirically demonstrate the superiority of our method compared to other instance segmentation techniques.more » « less
-
Unsupervised monocular depth estimation techniques have demonstrated encour- aging results but typically assume that the scene is static. These techniques suffer when trained on dynamical scenes, where apparent object motion can equally be ex- plained by hypothesizing the object’s independent motion, or by altering its depth. This ambiguity causes depth estimators to predict erroneous depth for moving objects. To resolve this issue, we introduce Dynamo-Depth, an unifying approach that disambiguates dynamical motion by jointly learning monocular depth, 3D independent flow field, and motion segmentation from unlabeled monocular videos. Specifically, we offer our key insight that a good initial estimation of motion seg- mentation is sufficient for jointly learning depth and independent motion despite the fundamental underlying ambiguity. Our proposed method achieves state-of-the-art performance on monocular depth estimation on Waymo Open [34] and nuScenes [3] Dataset with significant improvement in the depth of moving objects. Code and additional results are available at https://dynamo-depth.github.io.more » « less
-
We propose a novel way of using videos to obtain high precision object proposals for weakly-supervised object detection. Existing weakly-supervised detection approaches use off-the-shelf proposal methods like edge boxes or selective search to obtain candidate boxes. These methods provide high recall but at the expense of thousands of noisy proposals. Thus, the entire burden of finding the few relevant object regions is left to the ensuing object mining step. To mitigate this issue, we focus instead on improving the precision of the initial candidate object proposals. Since we cannot rely on localization annotations, we turn to video and leverage motion cues to automatically estimate the extent of objects to train a Weakly-supervised Region Proposal Network (W-RPN). We use the W-RPN to generate high precision object proposals, which are in turn used to re-rank high recall proposals like edge boxes or selective search according to their spatial overlap. Our W-RPN proposals lead to significant improvement in performance for state-of-the-art weakly-supervised object detection approaches on PASCAL VOC 2007 and 2012.more » « less
An official website of the United States government

