Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Feldt, Robert; Zimmermann, Thomas (Ed.)Context Despite being beneficial for managing computing infrastructure at scale, Ansible scripts include security weaknesses, such as hard-coded passwords. Security weaknesses can propagate into tasks, i.e., code constructs used for managing computing infrastructure with Ansible. Propagation of security weaknesses into tasks makes the provisioned infrastructure susceptible to security attacks. A systematic characterization of task infection, i.e., the propagation of security weaknesses into tasks, can aid practitioners and researchers in understanding how security weaknesses propagate into tasks and derive insights for practitioners to develop Ansible scripts securely. Objective The goal of the paper is to help practitioners and researchers understand how Ansible-managed computing infrastructure is impacted by security weaknesses by conducting an empirical study of task infections in Ansible scripts. Method We conduct an empirical study where we quantify the frequency of task infections in Ansible scripts. Upon detection of task infections, we apply qualitative analysis to determine task infection categories. We also conduct a survey with 23 practitioners to determine the prevalence and severity of identified task infection categories. With logistic regression analysis, we identify development factors that correlate with presence of task infections. Results In all, we identify 1,805 task infections in 27,213 scripts. We identify six task infection categories: anti-virus, continuous integration, data storage, message broker, networking, and virtualization. From our survey, we observe tasks used to manage data storage infrastructure perceived to have the most severe consequences. We also find three development factors, namely age, minor contributors, and scatteredness to correlate with the presence of task infections. Conclusion Our empirical study shows computing infrastructure managed by Ansible scripts to be impacted by security weaknesses. We conclude the paper by discussing the implications of our findings for practitioners and researchers.more » « less
-
Feldt, Robert; Zimmermann, Thomas; Basili, Victor R; Briand, Lionel C (Ed.)Recent work has shown that Machine Learning (ML) programs are error-prone and called for contracts for ML code. Contracts, as in the design by contract methodology, help document APIs and aid API users in writing correct code. The question is: what kinds of contracts would provide the most help to API users? We are especially interested in what kinds of contracts help API users catch errors at earlier stages in the ML pipeline. We describe an empirical study of posts on Stack Overflow of the four most often-discussed ML libraries: TensorFlow, Scikit-learn, Keras, and PyTorch. For these libraries, our study extracted 413 informal (English) API specifications. We used these specifications to understand the following questions. What are the root causes and effects behind ML contract violations? Are there common patterns of ML contract violations? When does understanding ML contracts require an advanced level of ML software expertise? Could checking contracts at the API level help detect the violations in early ML pipeline stages? Our key findings are that the most commonly needed contracts for ML APIs are either checking constraints on single arguments of an API or on the order of API calls. The software engineering community could employ existing contract mining approaches to mine these contracts to promote an increased understanding of ML APIs. We also noted a need to combine behavioral and temporal contract mining approaches. We report on categories of required ML contracts, which may help designers of contract languages.more » « less
An official website of the United States government

Full Text Available