Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)A highly conserved second-sphere active site αSer residue in nitrile hydratase (NHase), that forms a hydrogen bond with the axial metal-bound water molecule, was mutated to Ala, Asp, and Thr, in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and to Ala and Thr in the Fe-type NHase from Rhodococcus equi TG328–2 (ReNHase). All five mutants were successfully purified; metal analysis via ICP-AES indicated that all three Co-type PtNHase mutants were in their apo-form while the Fe-type αSer117Ala and αSer117Thr mutants contained 85 and 50 % of their active site Fe(III) ions, respectively. The kcat values obtained for the PtNHase mutant enzymes were between 0.03 ± 0.01 and 0.2 ± 0.02 s− 1 amounting to <0.8 % of the kcat value observed for WT PtNHase. The Fe-type ReNHase mutants retained some detectable activity with kcat values of 93 ± 3 and 40 ± 2 s− 1 for the αSer117Ala and αSer117Thr mutants, respectively, which is ~5 % of WT ReNHase activity towards acrylonitrile. UV–Vis spectra coupled with EPR data obtained on the ReNHase mutant enzymes showed subtle changes in the electronic environment around the active site Fe(III) ions, consistent with altering the hydrogen bonding interaction with the axial water ligand. X-ray crystal structures of the three PtNHase mutant enzymes confirmed the mutation and the lack of active site metal, while also providing insight into the active site hydrogen bonding network. Taken together, these data confirm that the conserved active site αSer residue plays an important catalytic role but is not essential for catalysis. They also confirm the necessity of the conserved second-sphere αSer residue for the metalation process and subsequent post-translational modification of the α-subunit in Co-type NHases but not Fe-type NHases, suggesting different mechanisms for the two types of NHases.more » « lessFree, publicly-accessible full text available January 1, 2026
-
NA (Ed.)This work is dedicated to debias the Near-Earth Object (NEO) population based on observations from the Asteroid Terrestrial-impact Last Alert System (ATLAS) telescopes. We have applied similar methods used to develop the recently released NEO model generator (NEOMOD), once debiasing the NEO population using data from Catalina Sky Survey (CSS) G96 telescope. ATLAS is composed of four different telescopes. We first analyzed observational data from each of all four telescopes separately and later combined them. Our results highlight main differences between CSS and ATLAS, e.g., sky coverage and survey power at debiasing the NEO population. ATLAS has a much larger sky coverage than CSS, allowing it to find bright NEOs that would be constantly ‘‘hiding’’ from CSS. Consequently, ATLAS is more powerful than CSS at debiasing the NEO population for H ≲ 19. With its intrinsically greater sensitivity and emphasis on observing near opposition, CSS excels in the debiasing of smaller objects. ATLAS, as an all sky survey designed to find imminent hazardous objects, necessarily spends a significant fraction of time looking at places on the sky where objects do not appear, reducing its power for debiasing the population of small objects. We estimate a NEO population completeness of ≈ 88%+3% −2% for H < 17.75 and ≈ 36%+1% −1% for H < 22.25. Those numbers are similar to previous estimates (within error bars for H < 17.75) from CSS, yet, around 3% and 8% smaller at their face values, respectively. We also confirm previous finding that the 𝜈6 secular resonance is the main source of small and faint NEOs at H = 28, whereas the 3:1 mean motion resonance with Jupiter dominates for larger and brighter NEOs at H = 15.more » « lessFree, publicly-accessible full text available January 1, 2026
-
NA (Ed.)In Kenneth Arrow’s last week of life at age 95, he reported that “I began my research career with an impossibility theorem. If I had time now, my last theorem would be an impossibility theorem about social choice for environmental policy.” This paper completes the formalization, proof, and discussion of the theorem that Arrow then described.more » « lessFree, publicly-accessible full text available January 1, 2026
-
NA (Ed.)
Abstract In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known as
Phytophthora infestans , still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843–1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.Free, publicly-accessible full text available December 1, 2025 -
NA (Ed.)Membrane distillation (MD) is a thermally-driven desalination process that can treat hypersaline brines. Considerable MD literature has focused on mitigating temperature and concentration polarization. This literature largely neglects that temperature and concentration polarization increase the feed density near the membrane. With gravity properly oriented, this increase in density could trigger buoyancy-driven convection and increase permeate production. Convection could also be strengthened by heating the feed channel wall opposite the membrane. To investigate that possibility, we perform a series of experiments using a plate-and-frame direct contact MD system with an active membrane area of 300 cm2 and a feed channel wall heated using a resistive heater. The experiments measure the average transmembrane permeate flux for two gravitational orientations, feed Reynolds numbers between 128 and 1128, and wall heat fluxes up to 12 kW/m2. The results confirm that with gravity properly oriented, wall-heating can trigger buoyancy-driven convection for a wide range of feed Reynolds numbers, and increase permeate production between roughly 20 and 130 %. We estimate, however, that at high Reynolds numbers (𝑅𝑒 > 800), more than 70 % of the wall heat is carried out of the MD system by the feed flow, without contributing to permeate production. This suggests the need for longer membranes and heat recovery steps in any future practical implementation.more » « lessFree, publicly-accessible full text available September 1, 2025
-
NA (Ed.)We derive sharp-interface models for one-dimensional brittle fracture via the inverse-deformation approach. Methods of Γ -convergence are employed to obtain the singular limits of previously proposed models. The latter feature a local, non-convex stored energy of inverse strain, augmented by small interfacial energy, formulated in terms of the inverse-strain gradient. They predict spontaneous fracture with exact crack-opening discontinuities, without the use of damage (phase) fields or pre-existing cracks; crack faces are endowed with a thin layer of surface energy. The models obtained herewith inherit the same properties, except that surface energy is now concentrated at the crack faces in the Γ -limit. Accordingly, we construct energy-minimizing configurations. For a composite bar with a breakable layer, our results predict a pattern of equally spaced cracks whose number is given as an increasing function of applied load.more » « lessFree, publicly-accessible full text available September 1, 2025
-
na (Ed.)The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanidebinding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh’s preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.more » « lessFree, publicly-accessible full text available August 14, 2025
-
How to Support Career Technical Instructors to Develop Students' Professional Skills: Research BriefNA (Ed.)Project GOALS (Greater Opportunities to Advance Lifelong Success), an NSF Advanced Technological Education targeted research project, brought together researchers and community college educators from 2020 through 2024 to co-develop, test, package, and distribute resources for developing technicians' professional skills. Through this work, the team discovered the barriers that hinder both instructors and students from connecting around professional skills development. To address these barriers, the Project GOALS team developed an instructional framework grounded in research that integrates focused low-stakes activities into classes as students work toward their technical certificates. Based on our research, we believe Project GOALS provides ways for students to students' career readiness. In this research brief, the team describes how the Project GOALS co-development collaboration revealed the supports that technical instructors need to build students' professional awareness and reflection habits. Through qualitative analysis, Project GOALS researchers discovered the challenges that prevent many instructors from sharing their honest assessments of students' professional skills. The brief describes findings and recommends ways that community colleges can provide the assistance and resources that instructors need to develop students' professional skills.more » « lessFree, publicly-accessible full text available July 31, 2025
-
NA (Ed.)
Abstract Heterozygous variants in the gene encoding the SOX10 transcription factor cause congenital syndromes affecting pigmentation, digestion, hearing, and neural function. Most of these symptoms are attributable to failed differentiation and loss of neural crest cells. Extensive research on mouse and zebrafish models has confirmed that Sox10 is essential for most non-skeletal crest derivatives, but seemingly dispensable for skeletal development. We challenge that concept here by revealing a novel requirement for Sox10 in skeletal mineralization. Neither neural crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish
sox10 mutants, despite normal osteoblast differentiation and matrix production. We show that mutants are deficient in the ionocyte subpopulation tasked with taking up calcium from the environment through the Trpv6 epithelial calcium channel, leading to a severe calcium deficit that explains the lack of mineralization. As these ionocytes do not derive from asox10 + lineage, we hypothesized that the primary defect instead resides in a separate organ that regulates ionocyte numbers or calcium uptake at a systemic level. Screening of the endocrine hormones known to regulate calcium homeostasis in adult vertebrates revealed significantly elevated levels of stanniocalcin (Stc1a), an anti-hypercalcemic hormone, in larvalsox10 mutants. Previous studies demonstrated that Stc1a inhibits calcium uptake in fish by repressingtrpv6 expression and blocking proliferation of Trpv6+ ionocytes. Our epistasis assays indicate that excess Stc1a is the proximate cause of the calcium deficit insox10 mutants. Lineage tracing shows that the pronephros-derived glands that synthesize Stc1a interact withsox10 + neural crest-derived cells, and that the latter are missing in mutants. We conclude that a subpopulation of Sox10+ neural crest non-cell-autonomously limit Stc1a production to allow the inaugural wave of calcium uptake necessary for the initiation of bone mineralization.Free, publicly-accessible full text available July 24, 2025