skip to main content


Title: Rapid range expansion of an invasive predatory snail, Oxychilus alliarius (Miller 1822), and its impact on endemic Hawaiian land snails
The invasive predatory snail Oxychilus alliarius is established in many locations around the world including the Hawaiian Islands. Anecdotal evidence suggests that it negatively impacts indigenous snail species where it has been introduced, although such impacts have not been quantified. On the Hawaiian island of Oahu, we tested the hypothesis that indigenous snails, especially small ones (<3 mm in maximum dimension), would be less abundant where O. alliarius had established populations. Fifty-six sites at four locations were repeatedly surveyed for snails between July 2010 and April 2011. The composition of the snail fauna differed in relation to O. alliarius abundance, as well as location. Notably, the abundance of the native Succineidae was negatively related with that of O. alliarius. The abundance of the native Tornatellidinae was significantly related to O. alliarius abundance but this relationship differed among locations, negative at one site and positive at the other three; these snails do not appear to be negatively impacted by O. alliarius. We also monitored the rate of expansion of a newly introduced O. alliarius population along a transect through a bog on the summit of Oahu’s highest mountain, Mt. Kaala. The population’s range expanded linearly between 2008 and 2011 by approximately 300 m (mean c. 113 m/year). This is the first attempt to quantify the impacts of O. alliarius on threatened native island snail faunas. While the results are complex, its high abundance, rapid rate of population expansion and probable negative impacts on certain species caution vigilance in preventing its introduction and spread to as yet uninvaded islands and locations.  more » « less
Award ID(s):
1120906 1656231
NSF-PAR ID:
10017281
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biological invasions
Volume:
18
Issue:
6
ISSN:
1387-3547
Page Range / eLocation ID:
1769-1780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails ( Lissachatina fulica ) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control. 
    more » « less
  2. null (Ed.)
    Abstract The Hawaiian archipelago was formerly home to one of the most species-rich land snail faunas (> 752 species), with levels of endemism > 99%. Many native Hawaiian land snail species are now extinct, and the remaining fauna is vulnerable. Unfortunately, lack of information on critical habitat requirements for Hawaiian land snails limits the development of effective conservation strategies. The purpose of this study was to examine the plant host preferences of native arboreal land snails in Puʻu Kukui Watershed, West Maui, Hawaiʻi, and compare these patterns to those from similar studies on the islands of Oʻahu and Hawaiʻi. Concordant with studies on other islands, we found that four species from three diverse families of snails in Puʻu Kukui Watershed had preferences for a few species of understorey plants. These were not the most abundant canopy or mid canopy species, indicating that forests without key understorey plants may not support the few remaining lineages of native snails. Preference for Broussaisia arguta among various island endemic snails across all studies indicates that this species is important for restoration to improve snail habitat. As studies examining host plant preferences are often incongruent with studies examining snail feeding, we suggest that we are in the infancy of defining what constitutes critical habitat for most Hawaiian arboreal snails. However, our results indicate that preserving diverse native plant assemblages, particularly understorey plant species, which facilitate key interactions, is critical to the goal of conserving the remaining threatened snail fauna. 
    more » « less
  3. The Pacificellinae are a group of small, high-spired land snails distributed on islands across the Pacific. Some species are endemic to particular island groups, but others have wide geographic distributions, several of which have been attributed to anthropogenic transport between islands before western contact. We used DNA sequence data (COI, 16S, ITS2, 28S) from recently collected and historical specimens to estimate a phylogeny of the Pacificellinae, with a focus on Hawaiian species. Phylogenetic analyses support recognizing Lamellidea and Pacificella as distinct genera and indicate that the genus group Tornatellinops should be regarded as a synonym of Lamellidea. The number of taxa defined by species delimitation analyses (ASAP, bPTP, mPTP) varies widely, with between 6 and 42 species estimated in the Hawaiian Islands. These candidate species hypotheses were evaluated in an integrative framework, including shell morphology, geography, and a multilocus phylogeny, to revise the taxonomy of Hawaiian pacificellines. Four Lamellidea species and two Pacificella species are recognized from the Hawaiian Islands, including two widespread species introduced to Hawaiʻi from the South Pacific. Lamellidea peponum in Hawaiʻi shows little genetic divergence from Polynesian specimens previously referred to L. oblonga, and the name L. oblonga is now regarded as a junior synonym. Lamellidea polygnampta is recognized here from across the Hawaiian Islands, L. cylindrica from the island of O‘ahu, and the lowland species, L. extincta, from the main Hawaiian Islands and the Northwestern Islands. The only Pacificella specimens found in Hawai‘i in modern surveys are more closely related to specimens of P. variabilis from Polynesia than to historical specimens of P. baldwini, indicating that the only Pacificella species now found in the main Hawaiian Islands appears to be introduced. Pacificellines have declined in abundance in Hawai‘i over the last century and the two species L. extincta and P. baldwini, formerly present across the Hawaiian Islands, are now either critically endangered or extinct.

     
    more » « less
  4. null (Ed.)
    Survey cruises by the National Oceanic and Atmospheric Administration (NOAA) in 2016 and 2019 yielded specimens of an undetermined red alga that rapidly attained alarming levels of benthic coverage at Pearl and Hermes Atoll, Papahānaumokuākea Marine National Monument, Hawai‘i. By 2019 the seaweed had covered large expanses on the northeast side of the atoll with mat-like, extensive growth of entangled thalli. Specimens were analyzed using light microscopy and molecular analysis, and were compared to morphological descriptions in the literature for closely related taxa. Light microscopy demonstrated that the specimens likely belonged to the rhodomelacean genus Chondria, yet comparisons to taxonomic literature revealed no morphological match. DNA sequence analyses of the mitochondrial COI barcode marker, the plastidial rbcL gene, and the nuclear SSU gene confirmed its genus-level placement and demonstrated that this alga was unique compared to all other available sequences. Based on these data, this cryptogenic seaweed is here proposed as a new species: Chondria tumulosa A.R.Sherwood & J.M.Huisman sp. nov. Chondria tumulosa is distinct from all other species of Chondria based on its large, robust thalli, a mat-forming tendency, large axial diameter in mature branches (which decreases in diameter with subsequent orders of branching), terete axes, and bluntly rounded apices. Although C. tumulosa does not meet the criteria for the definition of an invasive species given that it has not been confirmed as introduced to Pearl and Hermes Atoll, this seaweed is not closely related to any known Hawaiian native species and is of particular concern given its sudden appearance and rapid increase in abundance in the Papahānaumokuākea Marine National Monument; an uninhabited, remote, and pristine island chain to the northwest of the Main Hawaiian Islands. 
    more » « less
  5. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less