skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plants critical for Hawaiian land snail conservation: arboreal snail plant preferences in Puʻu Kukui Watershed, Maui
Abstract The Hawaiian archipelago was formerly home to one of the most species-rich land snail faunas (> 752 species), with levels of endemism > 99%. Many native Hawaiian land snail species are now extinct, and the remaining fauna is vulnerable. Unfortunately, lack of information on critical habitat requirements for Hawaiian land snails limits the development of effective conservation strategies. The purpose of this study was to examine the plant host preferences of native arboreal land snails in Puʻu Kukui Watershed, West Maui, Hawaiʻi, and compare these patterns to those from similar studies on the islands of Oʻahu and Hawaiʻi. Concordant with studies on other islands, we found that four species from three diverse families of snails in Puʻu Kukui Watershed had preferences for a few species of understorey plants. These were not the most abundant canopy or mid canopy species, indicating that forests without key understorey plants may not support the few remaining lineages of native snails. Preference for Broussaisia arguta among various island endemic snails across all studies indicates that this species is important for restoration to improve snail habitat. As studies examining host plant preferences are often incongruent with studies examining snail feeding, we suggest that we are in the infancy of defining what constitutes critical habitat for most Hawaiian arboreal snails. However, our results indicate that preserving diverse native plant assemblages, particularly understorey plant species, which facilitate key interactions, is critical to the goal of conserving the remaining threatened snail fauna.  more » « less
Award ID(s):
1837849 1656231 1656254 1902328
PAR ID:
10281644
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Oryx
ISSN:
0030-6053
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails ( Lissachatina fulica ) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control. 
    more » « less
  2. The invasive predatory snail Oxychilus alliarius is established in many locations around the world including the Hawaiian Islands. Anecdotal evidence suggests that it negatively impacts indigenous snail species where it has been introduced, although such impacts have not been quantified. On the Hawaiian island of Oahu, we tested the hypothesis that indigenous snails, especially small ones (<3 mm in maximum dimension), would be less abundant where O. alliarius had established populations. Fifty-six sites at four locations were repeatedly surveyed for snails between July 2010 and April 2011. The composition of the snail fauna differed in relation to O. alliarius abundance, as well as location. Notably, the abundance of the native Succineidae was negatively related with that of O. alliarius. The abundance of the native Tornatellidinae was significantly related to O. alliarius abundance but this relationship differed among locations, negative at one site and positive at the other three; these snails do not appear to be negatively impacted by O. alliarius. We also monitored the rate of expansion of a newly introduced O. alliarius population along a transect through a bog on the summit of Oahu’s highest mountain, Mt. Kaala. The population’s range expanded linearly between 2008 and 2011 by approximately 300 m (mean c. 113 m/year). This is the first attempt to quantify the impacts of O. alliarius on threatened native island snail faunas. While the results are complex, its high abundance, rapid rate of population expansion and probable negative impacts on certain species caution vigilance in preventing its introduction and spread to as yet uninvaded islands and locations. 
    more » « less
  3. The Pacificellinae are a group of small, high-spired land snails distributed on islands across the Pacific. Some species are endemic to particular island groups, but others have wide geographic distributions, several of which have been attributed to anthropogenic transport between islands before western contact. We used DNA sequence data (COI, 16S, ITS2, 28S) from recently collected and historical specimens to estimate a phylogeny of the Pacificellinae, with a focus on Hawaiian species. Phylogenetic analyses support recognizing Lamellidea and Pacificella as distinct genera and indicate that the genus group Tornatellinops should be regarded as a synonym of Lamellidea. The number of taxa defined by species delimitation analyses (ASAP, bPTP, mPTP) varies widely, with between 6 and 42 species estimated in the Hawaiian Islands. These candidate species hypotheses were evaluated in an integrative framework, including shell morphology, geography, and a multilocus phylogeny, to revise the taxonomy of Hawaiian pacificellines. Four Lamellidea species and two Pacificella species are recognized from the Hawaiian Islands, including two widespread species introduced to Hawaiʻi from the South Pacific. Lamellidea peponum in Hawaiʻi shows little genetic divergence from Polynesian specimens previously referred to L. oblonga, and the name L. oblonga is now regarded as a junior synonym. Lamellidea polygnampta is recognized here from across the Hawaiian Islands, L. cylindrica from the island of O‘ahu, and the lowland species, L. extincta, from the main Hawaiian Islands and the Northwestern Islands. The only Pacificella specimens found in Hawai‘i in modern surveys are more closely related to specimens of P. variabilis from Polynesia than to historical specimens of P. baldwini, indicating that the only Pacificella species now found in the main Hawaiian Islands appears to be introduced. Pacificellines have declined in abundance in Hawai‘i over the last century and the two species L. extincta and P. baldwini, formerly present across the Hawaiian Islands, are now either critically endangered or extinct. 
    more » « less
  4. Abstract The Hawaiian Islands are known to harbour a rich and diverse fauna of troglobionts (obligate subterranean species). To date, 74 obligate cavernicolous arthropod species have been documented from across the main Hawaiian islands, the majority of which were from Hawaiʻi Island, and mostly from lava tubes of Kilauea volcano, the youngest volcano on the island. A recent bioinventory of the Kipuka Kanohina lava tube system on the south-western side of Mauna Loa volcano revealed the existence of previously unknown cave-adapted species. Among them is the first cave-adapted species of the planthopper genus Iolania, Iolania frankanstonei Hoch & Porter sp. nov. Morphological and molecular data suggest that the species is closely related to the epigean (i.e. surface-dwelling) species Iolania perkinsi, which occurs in surface environments on Hawaiʻi Island. Thus, parapatric speciation is assumed, further corroborating the assumption that adaptive shifts are the major evolutionary patterns underlying the evolution of troglobionts on young oceanic islands. 
    more » « less
  5. Abstract PremiseCompetition from naturalized species and habitat loss are common threats to native biodiversity and may act synergistically to increase competition for decreasing habitat availability. We use Hawaiian dryland ferns as a model for the interactions between land‐use change and competition from naturalized species in determining habitat availability. MethodsWe used fine‐resolution climatic variables and carefully curated occurrence data from herbaria and community science repositories to estimate the distributions of Hawaiian dryland ferns. We quantified the degree to which naturalized ferns tend to occupy areas suitable for native species and mapped the remaining available habitat given land‐use change. ResultsOf all native species,Doryopteris angelicahad the lowest percentage of occurrences of naturalized species in its suitable area whileD. decorahad the highest. However, allDoryopterisspp. had a higher percentage overlap, whilePellaea ternifoliahad a lower percentage overlap, than expected by chance.Doryopteris decoraandD. decipienshad the lowest proportions (<20%) of suitable area covering native habitat. DiscussionAreas characterized by shared environmental preferences of native and naturalized ferns may decrease due to human development and fallowed agricultural lands. Our study demonstrates the value of place‐based application of a recently developed correlative ecological niche modeling approach for conservation risk assessment in a rapidly changing and urbanized island ecosystem. 
    more » « less