skip to main content


Title: Negative impacts of invasive predators used as biological control agents against the pest snail Lissachatina fulica: the snail Euglandina ‘rosea’ and the flatworm Platydemus manokwari
Abstract Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails ( Lissachatina fulica ) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control.  more » « less
Award ID(s):
1837849 1656231 1656254 1902328
NSF-PAR ID:
10281642
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biological Invasions
Volume:
23
Issue:
4
ISSN:
1387-3547
Page Range / eLocation ID:
997 to 1031
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The invasive predatory snail Oxychilus alliarius is established in many locations around the world including the Hawaiian Islands. Anecdotal evidence suggests that it negatively impacts indigenous snail species where it has been introduced, although such impacts have not been quantified. On the Hawaiian island of Oahu, we tested the hypothesis that indigenous snails, especially small ones (<3 mm in maximum dimension), would be less abundant where O. alliarius had established populations. Fifty-six sites at four locations were repeatedly surveyed for snails between July 2010 and April 2011. The composition of the snail fauna differed in relation to O. alliarius abundance, as well as location. Notably, the abundance of the native Succineidae was negatively related with that of O. alliarius. The abundance of the native Tornatellidinae was significantly related to O. alliarius abundance but this relationship differed among locations, negative at one site and positive at the other three; these snails do not appear to be negatively impacted by O. alliarius. We also monitored the rate of expansion of a newly introduced O. alliarius population along a transect through a bog on the summit of Oahu’s highest mountain, Mt. Kaala. The population’s range expanded linearly between 2008 and 2011 by approximately 300 m (mean c. 113 m/year). This is the first attempt to quantify the impacts of O. alliarius on threatened native island snail faunas. While the results are complex, its high abundance, rapid rate of population expansion and probable negative impacts on certain species caution vigilance in preventing its introduction and spread to as yet uninvaded islands and locations. 
    more » « less
  2. null (Ed.)
    Abstract The Hawaiian archipelago was formerly home to one of the most species-rich land snail faunas (> 752 species), with levels of endemism > 99%. Many native Hawaiian land snail species are now extinct, and the remaining fauna is vulnerable. Unfortunately, lack of information on critical habitat requirements for Hawaiian land snails limits the development of effective conservation strategies. The purpose of this study was to examine the plant host preferences of native arboreal land snails in Puʻu Kukui Watershed, West Maui, Hawaiʻi, and compare these patterns to those from similar studies on the islands of Oʻahu and Hawaiʻi. Concordant with studies on other islands, we found that four species from three diverse families of snails in Puʻu Kukui Watershed had preferences for a few species of understorey plants. These were not the most abundant canopy or mid canopy species, indicating that forests without key understorey plants may not support the few remaining lineages of native snails. Preference for Broussaisia arguta among various island endemic snails across all studies indicates that this species is important for restoration to improve snail habitat. As studies examining host plant preferences are often incongruent with studies examining snail feeding, we suggest that we are in the infancy of defining what constitutes critical habitat for most Hawaiian arboreal snails. However, our results indicate that preserving diverse native plant assemblages, particularly understorey plant species, which facilitate key interactions, is critical to the goal of conserving the remaining threatened snail fauna. 
    more » « less
  3. Abstract

    As coral populations decline across the Caribbean, it is becoming increasingly important to understand the forces that inhibit coral survivorship and recovery. Predation by corallivores, such as the short coral snailCoralliophila abbreviata, are one such threat to coral health and recovery worldwide, but current understanding of the factors controlling corallivore populations, and therefore predation pressure on corals, remains limited. To examine the extent to which bottom-up forces (i.e., coral prey), top-down forces (i.e., predators), and marine protection relate toC. abbreviatadistributions, we surveyedC. abbreviataabundance, percent coral cover, and the abundance of potential snail predators across six protected and six unprotected reefs in the Florida Keys. We found thatC. abbreviataabundance was lower in protected areas where predator assemblages were also more diverse, and that across all sites snail abundance generally increased with coral cover.C. abbreviataabundance had strong, negative relationships with two gastropod predators—the Caribbean spiny lobster (Panulirus argus) and the grunt black margate (Anisotremus surinamensis), which may be exerting top-down pressure onC. abbreviatapopulations. Further, we found the size ofC. abbreviatawas also related to reef protection status, with largerC. abbreviataon average in protected areas, suggesting that gape-limited predators such asP. argusandA. surinamensismay alter size distributions by targeting small snails. Combined, these results provide preliminary evidence that marine protection in the Florida Keys may preserve critical trophic interactions that indirectly promote coral success via control of local populations of the common corallivorous snailC. abbreviata.

     
    more » « less
  4. Abstract

    European arrival into Australia had large‐scale impacts on the local flora and fauna. Most notably, Europeans brought with them numerous non‐native species, including the European red fox (Vulpes vulpes), European rabbit (Oryctolagus cuniculus), and the goat (Capra hircus) among many others. The introduction of these species had significant consequences on native Australian mammals, causing some small‐ to medium‐sized herbivores to become geographically restricted to primarily islands. Here, we examined the dietary ecology of the quokka (Setonix brachyurus), a native marsupial herbivore with a restricted geographic range in Western Australia before and after European arrival. Fossils from south‐western Australia and modern specimens were examined via dental microwear texture analysis and stable isotope analysis to assess whether the diet of the quokka had changed dramatically over time. Collectively, we help clarify whether there were any ecological reasons as to why this marsupial became geographically restricted, aside from the presence of invasive predators on mainland Australia. The quokka maintains a browsing diet from the Pleistocene to the present on the mainland, but modern island populations eat drier and tougher foods when living on islands lacking invasive mammals. There is also an apparent shift in the feeding environment of the quokkas on mainland Australia, from more open forests/shrublands in the Pleistocene to denser and wetter forests. Multi‐proxy data collectively indicate that the restricted range of the quokka today is most likely a result of predation from non‐native taxa and/or other human influences—not because of a lack of suitable habitat.

     
    more » « less
  5. Mancinelli, Giorgio (Ed.)

    The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis–a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrataandBulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.

     
    more » « less