skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inter-app communication between Android apps developed in app-inventor and Android studio
Communications between mobile apps are an important aspect of mobile platforms. Android is specifically designed with inter-app communication in mind and depends on this to provide different platform specific functionalities. Android Apps can either be designed with the help of Android SDK and using IDEs such as Android Studio or by using a browser based platform called App Inventor. These two development platforms provide their own technique for inter-app communication in the same platform, however lack an established method of inter-app communication when apps are developed using the two seperate development platforms. This paper provides the missing information required for the app communications and presents the method for sending and receiving arguments between apps developed in these two platforms. The paper also outlines the significance of the result, and examines their limitations.  more » « less
Award ID(s):
1332531
PAR ID:
10018255
Author(s) / Creator(s):
;
Date Published:
Journal Name:
MOBILESoft '16 Proceedings of the International Workshop on Mobile Software Engineering and Systems
Page Range / eLocation ID:
17 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Android’s flexible communication model allows interactions among third-party apps, but it also leads to inter-app security vulnerabilities. Specifically, malicious apps can eavesdrop on interactions between other apps or exploit the functionality of those apps, which can expose a user’s sensitive information to attackers. While the state-of-the-art tools have focused on detecting inter-app vulnerabilities in Android, they neither accurately analyze realistically large numbers of apps nor effectively deliver the identified issues to users. This paper presents SEALANT, a novel tool that combines static analysis and visualization techniques that, together, enable accurate identification of inter-app vulnerabilities as well as their systematic visualization. SEALANT statically analyzes architectural information of a given set of apps, infers vulnerable communication channels where inter-app attacks can be launched, and visualizes the identified information in a compositional representation. SEALANT has been demonstrated to accurately identify inter-app vulnerabilities from hundreds of real-world Android apps and to effectively deliver the identified information to users. 
    more » « less
  2. Kim, JH.; Singh, M.; Khan, J.; Tiwary, U.S.; Sur, M.; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less
  3. The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps. 
    more » « less
  4. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  5. We present a new approach to static analysis for security vetting of Android apps and a general framework called Amandroid. Amandroid determines points-to information for all objects in an Android app component in a flow and context-sensitive (user-configurable) way and performs data flow and data dependence analysis for the component. Amandroid also tracks inter-component communication activities. It can stitch the component-level information into the app-level information to perform intra-app or inter-app analysis. In this article, (a) we show that the aforementioned type of comprehensive app analysis is completely feasible in terms of computing resources with modern hardware, (b) we demonstrate that one can easily leverage the results from this general analysis to build various types of specialized security analyses—in many cases the amount of additional coding needed is around 100 lines of code, and (c) the result of those specialized analyses leveraging Amandroid is at least on par and often exceeds prior works designed for the specific problems, which we demonstrate by comparing Amandroid’s results with those of prior works whenever we can obtain the executable of those tools. Since Amandroid’s analysis directly handles inter-component control and data flows, it can be used to address security problems that result from interactions among multiple components from either the same or different apps. Amandroid’s analysis is sound in that it can provide assurance of the absence of the specified security problems in an app with well-specified and reasonable assumptions on Android runtime system and its library. 
    more » « less