skip to main content


Title: Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna
Abstract

Quaternary climate fluctuations restructured biodiversity across North American high latitudes through repeated episodes of range contraction, population isolation and divergence, and subsequent expansion. Identifying how species responded to changing environmental conditions not only allows us to explore the mode and tempo of evolution in northern taxa, but also provides a basis for forecasting future biotic response across the highly variable topography of western North America. Using a multilocus approach under a Bayesian coalescent framework, we investigated the phylogeography of a wide‐ranging mammal, the long‐tailed vole,Microtus longicaudus. We focused on populations along the North Pacific Coast to refine our understanding of diversification by exploring the potentially compounding roles of multiple glacial refugia and more recent fragmentation of an extensive coastal archipelago. Through a combination of genetic data and species distribution models (SDMs), we found that historical climate variability influenced contemporary genetic structure, with multiple isolated locations of persistence (refugia) producing multiple divergent lineages (Beringian or northern, southeast Alaska or coastal, and southern or continental) during glacial advances. These vole lineages all occur along the North Pacific Coast where the confluence of numerous independent lineages in other species has produced overlapping zones of secondary contact, collectively a suture zone. Finally, we detected high levels of neoendemism due to complex island geography that developed in the last 10,000 years with the rising sea levels of the Holocene.

 
more » « less
NSF-PAR ID:
10018927
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
6
Issue:
18
ISSN:
2045-7758
Format(s):
Medium: X Size: p. 6633-6647
Size(s):
["p. 6633-6647"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Numerous glacial refugia have been hypothesized along North America's North Pacific Coast that may have increased divergence of refugial taxa, leading to elevated endemism and subsequently clustered hybrid zones following deglaciation. The locations and community composition of these ice‐free areas remains controversial, but whole‐genome sequences now enable detailed analysis of the demographic and evolutionary histories of refugial taxa. Here, we use genomic data to test spatial and temporal processes of diversification among martens with respect to the Coastal Refugium Hypothesis, to understand the role of climate cycling in shaping diversity across complex landscapes.

    Location

    North America and North Pacific Coast archipelagos.

    Taxon

    North American martens (Martes).

    Methods

    Short‐read whole‐genome resequencing data were generated for 11 martens: fourM. americana, fourM. caurina, two hybrids, and one outgroup (Martes zibellina). Sampling was representative of known genetic clades within New World martens, including sampling within insular and continental hybrid zones and along the North Pacific Coast (five island populations).ADMIXTURE, F‐statistics, andD‐statistics (ABBA‐BABA) were used to identify introgression and infer directionality. Heterozygosity densities, estimated via PSMC, were used to characterize historical demography at and below the species level to infer refugial and colonization processes.

    Results

    Forest‐associated Pacific martens (M. caurina) are divided into distinct insular and continental clades consistent with the Coastal Refugium Hypothesis. There was no evidence of introgression on islands that received historical translocations of American pine martens (M. americana), but introgression was detected in two active zones of secondary contact: one insular and one continental. Only early‐generational hybrids were identified across multiple hybrid zones, a pattern consistent with potential genetic swamping ofM. caurinabyM. americana.

    Main conclusions

    Despite an incomplete fossil record, genomic evidence supports the persistence of forest‐associated martens, likely the insular Pacific marten lineage, along the western edges of the Alexander Archipelago during the Last Glacial Maximum. This discovery informs our understanding of refugial paleoenvironments, critical to interpreting refugial timing, duration, and community composition. Genomic reevaluations of other taxa along North America's North Pacific Coast may yield new and deeper perspectives on the history of refugial forest communities and the role of dynamic climate shifts in shaping high‐latitude diversity across complex insular landscapes.

     
    more » « less
  2. Abstract

    Although islands are of long‐standing interest to biologists, only a handful of studies have investigated the role of climatic history in shaping evolutionary diversification in high‐latitude archipelagos. In this study of the Alexander Archipelago (AA) of Southeast Alaska, we address the impact of glacial cycles on geographic genetic structure for three mammals co‐distributed along the North Pacific Coast. We examined variation in mitochondrial and nuclear loci for long‐tailed voles (Microtus longicaudus), northwestern deermice (Peromyscus keeni), and dusky shrews (Sorex monticola), and then tested hypotheses derived from Species Distribution Models, reconstructions of paleoshorelines, and island area and isolation. In all three species, we identified paleoendemic clades that likely originated in coastal refugia, a finding consistent with other paleoendemic lineages identified in the region such as ermine. Although there is spatial concordance at the regional level for endemism, finer scale spatial and temporal patterns are less clearly defined. Demographic expansion across the region for these distinctive clades is also evident and highlights the dynamic history of Late Quaternary contraction and expansion that characterizes high‐latitude species.

     
    more » « less
  3. Abstract Aim

    Refugial isolation during glaciation is an established driver of speciation; however, the opposing role of interglacial population expansion, secondary contact, and gene flow on the diversification process remains less understood. The consequences of glacial cycling on diversity are complex and especially so for archipelago species, which experience dramatic fluctuations in connectivity in response to both lower sea levels during glacial events and increased fragmentation during glacial recession. We test whether extended refugial isolation has led to the divergence of genetically and morphologically distinct species within Holarctic ermine (Mustela erminea), a small cosmopolitan carnivore species that harbours 34 extant subspecies, 14 of which are insular endemics.

    Location

    Holarctic.

    Methods

    We use genetic sequences (complete mitochondrial genomes, four nuclear genes) from >100 ermine (stoats) and geometric morphometric data for >200 individuals (27 of the 34 extant subspecies) from across their Holarctic range to provide an integrative perspective on diversification and endemism across this complex landscape. Multiple species delimitation methods (iBPP,bPTP) assessed congruence between morphometric and genetic data.

    Results

    Our results support the recognition of at least three species within theM. ermineacomplex, coincident with three of four genetic clades, tied to diversification in separate glacial refugia. We found substantial geographic variation within each species, with geometric morphometric results largely consistent with historical infraspecific taxonomy.

    Main conclusions

    Phylogeographic structure mirrors patterns of diversification in other Holarctic species, with a major Nearctic‐Palearctic split, but with greater intraspecific morphological diversity. Recognition of insular endemic speciesM. haidarumis consistent with a deep history of refugial persistence and highlights the urgency of mindful management of island populations along North America's North Pacific Coast. Significant environmental modification (e.g. industrial‐scale logging, mining) has been proposed for a number of these islands, which may elevate the risk of extinction of insular palaeoendemics.

     
    more » « less
  4. Abstract Aim

    Current distributions of widespread North American (NA) species have been shaped by Pleistocene glacial cycles, latitudinal temperature gradients, sharp longitudinal habitat transitions and the vicariant effects of major mountain and river systems that subdivide the continent. Within these transcontinental species, genetic diversity patterns might not conform to established biogeographic breaks compared to more spatially restricted taxa due to intrinsic differences or spatiotemporal differences. In this study, we highlight the effects of these extrinsic variables on genetic structuring by investigating the phylogeographic history of a widespread generalist squamate found throughout NA.

    Location

    North America.

    Taxon

    Common gartersnake,Thamnophis sirtalis.

    Methods

    We evaluate the effects of major river basins and the forest‐grassland transition into the Interior Plains on genetic structure patterns using phylogenetic, spatially informed population structure and demographic analyses of single nucleotide polymorphism data and address range expansion history with ecological niche modelling using locality and historic climate data.

    Results

    We identify four phylogeographic lineages with varying degrees of connectivity between them. We find discordant population structure patterns between sex‐linked and autosomal loci with respect to the relationship between the central NA lineage relative to coastal lineages. We find support for southeast Pleistocene refugia where recent secondary contact occurred during the Last Glacial Maximum and evidence for both northern and southern refugia in western NA.

    Main Conclusion

    Our results provide strong evidence for a Pliocene origin forT. sirtalisin central‐southeastern NA preceding its rapid expansion across the continent prior to middle Pleistocene climate‐mediated lineage formation. We implicate major riverine networks within the Mississippi watershed in likely repeated westward expansion events across the Interior Plains. Finally, we corroborate prior conclusions that phenotypic differences between subspecies do not reflect shared evolutionary history and note that the degree of separation between inferred lineages warrants further investigation before any taxonomic revisions are proposed.

     
    more » « less
  5. Abstract

    The ecosystem engineer onuphid polychaeteDiopatra biscayensishas a continuous population in the Bay of Biscay from the Cantabria coast in Spain to southern Brittany in France. A group of disjunct populations also are found in the English Channel, separated from the Biscay population by more than 400 coastal kilometers. It remains unclear whetherD. biscayensisis native to the Bay of Biscay; it is also debated whether the disjunct populations in the English Channel are relics of a formerly continuous population, or the product of recent introductions through aquaculture. Here, we use climate hindcasts to explore hypotheses about theD. biscayensishistorical distribution in Europe. IfD. biscayensisis native, its range would have been restricted to southern Iberia and the Mediterranean during the Last Glacial Maximum (21,000BP). However, the species is completely absent from both regions today, further supporting its interpretation as a non‐native species. If it was historically present in Europe, the climate hindcasts are congruent with range contraction in the Last Glacial Maximum (21,000BP), expansion in the Mid‐Holocene Warm Period (6000BP), and contraction again in the past 1000 years (850–1850), prior to the first reports ofD. biscayensison the Spanish and French Atlantic coasts. However, the simulations do not support there being climatic refugia along the English Channel coast that would account for the existence of relic populations. Taken together, the evidence suggests thatD. biscayensishas been introduced to the Bay of Biscay, and that disjunct populations in the English Channel are the result of recent transport through human activities, perhaps aquaculture.

     
    more » « less