skip to main content


Title: Whole‐genome resequencing reveals persistence of forest‐associated mammals in Late Pleistocene refugia along North America’s North Pacific Coast
Abstract Aim

Numerous glacial refugia have been hypothesized along North America's North Pacific Coast that may have increased divergence of refugial taxa, leading to elevated endemism and subsequently clustered hybrid zones following deglaciation. The locations and community composition of these ice‐free areas remains controversial, but whole‐genome sequences now enable detailed analysis of the demographic and evolutionary histories of refugial taxa. Here, we use genomic data to test spatial and temporal processes of diversification among martens with respect to the Coastal Refugium Hypothesis, to understand the role of climate cycling in shaping diversity across complex landscapes.

Location

North America and North Pacific Coast archipelagos.

Taxon

North American martens (Martes).

Methods

Short‐read whole‐genome resequencing data were generated for 11 martens: fourM. americana, fourM. caurina, two hybrids, and one outgroup (Martes zibellina). Sampling was representative of known genetic clades within New World martens, including sampling within insular and continental hybrid zones and along the North Pacific Coast (five island populations).ADMIXTURE, F‐statistics, andD‐statistics (ABBA‐BABA) were used to identify introgression and infer directionality. Heterozygosity densities, estimated via PSMC, were used to characterize historical demography at and below the species level to infer refugial and colonization processes.

Results

Forest‐associated Pacific martens (M. caurina) are divided into distinct insular and continental clades consistent with the Coastal Refugium Hypothesis. There was no evidence of introgression on islands that received historical translocations of American pine martens (M. americana), but introgression was detected in two active zones of secondary contact: one insular and one continental. Only early‐generational hybrids were identified across multiple hybrid zones, a pattern consistent with potential genetic swamping ofM. caurinabyM. americana.

Main conclusions

Despite an incomplete fossil record, genomic evidence supports the persistence of forest‐associated martens, likely the insular Pacific marten lineage, along the western edges of the Alexander Archipelago during the Last Glacial Maximum. This discovery informs our understanding of refugial paleoenvironments, critical to interpreting refugial timing, duration, and community composition. Genomic reevaluations of other taxa along North America's North Pacific Coast may yield new and deeper perspectives on the history of refugial forest communities and the role of dynamic climate shifts in shaping high‐latitude diversity across complex insular landscapes.

 
more » « less
NSF-PAR ID:
10452410
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
48
Issue:
5
ISSN:
0305-0270
Page Range / eLocation ID:
p. 1153-1169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Refugial isolation during glaciation is an established driver of speciation; however, the opposing role of interglacial population expansion, secondary contact, and gene flow on the diversification process remains less understood. The consequences of glacial cycling on diversity are complex and especially so for archipelago species, which experience dramatic fluctuations in connectivity in response to both lower sea levels during glacial events and increased fragmentation during glacial recession. We test whether extended refugial isolation has led to the divergence of genetically and morphologically distinct species within Holarctic ermine (Mustela erminea), a small cosmopolitan carnivore species that harbours 34 extant subspecies, 14 of which are insular endemics.

    Location

    Holarctic.

    Methods

    We use genetic sequences (complete mitochondrial genomes, four nuclear genes) from >100 ermine (stoats) and geometric morphometric data for >200 individuals (27 of the 34 extant subspecies) from across their Holarctic range to provide an integrative perspective on diversification and endemism across this complex landscape. Multiple species delimitation methods (iBPP,bPTP) assessed congruence between morphometric and genetic data.

    Results

    Our results support the recognition of at least three species within theM. ermineacomplex, coincident with three of four genetic clades, tied to diversification in separate glacial refugia. We found substantial geographic variation within each species, with geometric morphometric results largely consistent with historical infraspecific taxonomy.

    Main conclusions

    Phylogeographic structure mirrors patterns of diversification in other Holarctic species, with a major Nearctic‐Palearctic split, but with greater intraspecific morphological diversity. Recognition of insular endemic speciesM. haidarumis consistent with a deep history of refugial persistence and highlights the urgency of mindful management of island populations along North America's North Pacific Coast. Significant environmental modification (e.g. industrial‐scale logging, mining) has been proposed for a number of these islands, which may elevate the risk of extinction of insular palaeoendemics.

     
    more » « less
  2. Abstract

    Niche conservatism—the retention of ecological traits across space and time—is an emerging topic of interest because it can predict responses to global change. The conservation of Grinnellian niche characteristics, like species‐habitat associations, has received widespread attention, but the conservation of Eltonian traits such as consumer–resource interactions remains poorly understood.

    The inability to quantify Eltonian niches through space and time has historically limited the assessment of Eltonian niche conservatism and the dynamics of foraging across populations. Consequently, the relative influence of endogenous factors like phylogeny versus exogenous features like environmental context has rarely been addressed.

    We tested Eltonian niche conservatism using a paired design to compare foraging among four populations of American martensMartes americanaand Pacific martensMartes caurina, morphologically and ecologically similar sister taxa that are allopatrically distributed throughout western North America. We developed a three‐stage isotopic framework and then quantified dietary niche overlap between the sister species and paired island‐mainland sites to assess the relative influence of endogenous (i.e., species) versus exogenous (i.e., environment) factors on Eltonian niches. First, we calculated pairwise dietary overlap in scaled δ‐space using standard ellipses. We then estimated proportional diets (“p‐space”) for individuals using isotopic mixing models and developed a novel utilization distribution overlap approach to quantify proportional dietary overlap. Lastly, we estimated population‐level proportional diets and quantified the differential use of functional prey groups across sites.

    We detected no pairwise overlap of dietary niches in δ‐space, and distributions of individual diets in p‐space revealed little overlap in core diets across populations. All pairwise comparisons of individuals revealed significant differences in diet, and population‐level comparisons detected contrasting use of functional prey groups.

    We developed a multi‐faceted isotopic framework to quantify Eltonian niches and found limited evidence of Eltonian niche conservatism across carnivore populations. Our findings are consistent with the growing recognition of dietary plasticity in consumers and suggest that consumer–resource dynamics are largely driven by exogenous environmental factors like land cover and community composition. These results illustrate the context‐dependent nature of foraging and indicate consumer functionality can be dynamic.

    Aplain language summaryis available for this article.

     
    more » « less
  3. Abstract

    Island ecosystems are globally threatened, and efforts to restore historical communities are widespread. Such conservation efforts should be informed by accurate assessments of historical community composition to establish appropriate restoration targets. Isle Royale National Park is one of the most researched island ecosystems in the world, yet little is actually known about the biogeographic history of most Isle Royale taxa. To address this uncertainty and inform restoration targets, we determined the phylogeographic history of American martens (Martes americana), a species rediscovered on Isle Royale 76 years after presumed extirpation. We characterized the genetic composition of martens throughout the Great Lakes region using nuclear and mitochondrial markers, identified the source of Isle Royale martens using genetic structure analyses, and used demographic bottleneck tests to evaluate (eliminate redundancy of test). 3 competing colonization scenarios. Martens exhibited significant structure regionally, including a distinct Isle Royale cluster, but mitochondrial sequences revealed no monophyletic clades or evolutionarily significant units. Rather, martens were historically extirpated and recolonized Isle Royale from neighbouring Ontario, Canada in the late 20thcentury. These findings illustrate the underappreciated dynamics of island communities, underscore the importance of historical biogeography for establishing restoration baselines, and provide optimism for extirpated and declining Isle Royale vertebrates whose reintroductions have been widely debated.

     
    more » « less
  4. Abstract

    Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species,Asterias rubensandA. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome‐wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth;Asterias forbesidisplays a relatively narrow environmental niche while conversely,A. rubenshas a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.

     
    more » « less
  5. Abstract

    In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.

     
    more » « less