Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures
By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell.
more »
« less
- Award ID(s):
- 1608682
- PAR ID:
- 10019628
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 6
- Issue:
- 9
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report studies of multifunctional, nanostructured diamond composites that were fabricated using chemical vapor deposition (CVD) techniques. Grain sizes from micrometer, to submicron, nano, and ultrananocrystalline diamond (UNCD) were controlled by varying CH4, hydrogen, and argon gas concentrations during the syntheses. Scanning electron microscopy (SEM) and Raman scattering spectroscopy were used to investigate the morphologies, composites, and crystallinities of the films. Four multifunctional sensor prototypes were designed, fabricated, and tested, based on the four diamond materials of different grain sizes. The responses of the four prototypes to either pollution gas or UV light illumination were systematically investigated at different operating temperatures. Experimental data indicated the obtained UNCD composite from the low-cost simple CVD fabrication technique appeared to have very good sensitivities when exposed to low concentrations of H2 or NH3 gas with a decent response and fast recovery time. Furthermore, highly induced photocurrents from both microdiamond- and UNCD-based prototypes to deep UV illumination were also demonstrated, with responsivities up to 2750 mA/W and 550 mA/W at 250 nm wavelength, respectively. Overall, the fabricated UNCD prototypes displayed a good balance in performance for multifunctional sensor applications in terms of responsivity, stability, and repeatability.more » « less
-
Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research.more » « less
-
Halide vapor phase epitaxial (HVPE) Ga2O3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga2O3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga2O3 (nc-β-Ga2O3) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga2O3 on sapphire but failed to detect any β-Ga2O3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga2O3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga2O3/sapphire and nc-Ga2O3/diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.more » « less
-
A set of 20 single crystal diamond plates synthesized using chemical vapor deposition (CVD) was studied using X-ray diffraction imaging to determine their applicability as side-bounce (single-reflection) Laue monochromators for synchrotron radiation. The crystal plates were of optical grade (as provided by the supplier) with (001) nominal surface orientation. High dislocation density was found for all samples. Distortions in the crystal lattice were quantified for low-index Laue reflections of interests using rocking curve topography. Maps of effective radius of curvature in the scattering plane were calculated using spline interpolation of the rocking curve peak position across the studied plates. For several selected plates, nearly flat regions with large effective radius of curvature were found ( R 0 ≳ 30 - 70 m, some regions as large as 1 × 4 mm 2 ). The average width of the rocking curve for these regions was found to be about 150 μ rad (r.m.s.). These observations suggest that the selected CVD diamond plates could be used as intermediate-bandwidth monochromators refocusing the radiation source to a specific location downstream with close to 1:1 distance ratio.more » « less
An official website of the United States government
