We report studies of multifunctional, nanostructured diamond composites that were fabricated using chemical vapor deposition (CVD) techniques. Grain sizes from micrometer, to submicron, nano, and ultrananocrystalline diamond (UNCD) were controlled by varying CH4, hydrogen, and argon gas concentrations during the syntheses. Scanning electron microscopy (SEM) and Raman scattering spectroscopy were used to investigate the morphologies, composites, and crystallinities of the films. Four multifunctional sensor prototypes were designed, fabricated, and tested, based on the four diamond materials of different grain sizes. The responses of the four prototypes to either pollution gas or UV light illumination were systematically investigated at different operating temperatures. Experimental data indicated the obtained UNCD composite from the low-cost simple CVD fabrication technique appeared to have very good sensitivities when exposed to low concentrations of H2 or NH3 gas with a decent response and fast recovery time. Furthermore, highly induced photocurrents from both microdiamond- and UNCD-based prototypes to deep UV illumination were also demonstrated, with responsivities up to 2750 mA/W and 550 mA/W at 250 nm wavelength, respectively. Overall, the fabricated UNCD prototypes displayed a good balance in performance for multifunctional sensor applications in terms of responsivity, stability, and repeatability.
more » « less- Award ID(s):
- 1736093
- PAR ID:
- 10497623
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Chemosensors
- Volume:
- 10
- Issue:
- 11
- ISSN:
- 2227-9040
- Page Range / eLocation ID:
- 488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Diamond-based sensors have shown great potential in the past few years due to their unique physicochemical properties. We report on the development of high-performance nitrogen-doped ultrananocrystalline diamond (UNCD) nanowire-based methane (CH4) gas sensors, taking advantage of a large surface-to-volume ratio and a small active area offered by the 1D nanowire geometry. The morphologic surface and crystalline structures of UNCD are also characterized by using scanning electron microscopy (SEM) and Raman scattering, respectively. By using synthesized nanowire arrays combined with 4-pin electrical electrodes, prototypic highly sensitive CH4 gas sensors have been designed, fabricated and tested. Various parameters including the sensitivity, response and recovery times, and thermal effect on the performance of the gas sensor have also been investigated in order to quantitate the sensing ability. Enhanced by the small grain size and porosity of the nanowire structure, fabricated nanowire UNCD sensors demonstrated a high sensitivity to CH4 gas at room temperature down to 2 ppm, as well as fast response and recovery times which are almost 10 times faster than that of regular nanodiamond thin film based sensors.more » « less
-
In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated with 4–5 nm-sized platinum (Pt) nanoparticles. Then, titanium metal electrodes were deposited onto the sample surface to form a metal–semiconductor–metal (MSM) photodetector of 50 mm2 in size. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to study the crystal structure of the synthesized In2O3 film. The nanoplasmonic enhanced In2O3-based UV photodetectors were characterized by various UV wavelengths at different radiation intensities and temperatures. A high responsivity of up to 18 A/W was obtained at 300 nm wavelength when operating at 180 °C. In addition, the fabricated prototypes show a thermally stable baseline and excellent repeatability to a wide range of UV lights with low illumination intensity when operating at such a high temperature.
-
null (Ed.)The effect of UV illumination on the room temperature electrical detection of ammonium nitrate vapor was examined. The sensor consists of a self-assembled ensemble of silica nanosprings coated with zinc oxide. UV illumination mitigates the baseline drift of the resistance relative to operation under dark conditions. It also lowers the baseline resistance of the sensor by 25% compared to dark conditions. At high ammonium nitrate concentrations (120 ppm), the recovery time after exposure is virtually identical with or without UV illumination. At low ammonium nitrate concentrations (20 ppm), UV illumination assists with refreshing of the sensor by stimulating analyte desorption, thereby enabling the sensor to return to its baseline resistance. Under dark conditions and low ammonium nitrate concentrations, residual analyte builds up with each exposure, which inhibits the sensor from returning to its original baseline resistance and subsequently impedes sensing due to permanent occupation of absorption sites.more » « less
-
Zero-Bias Broadband Ultraviolet Photoconductor Based on Ultrananocrystalline Diamond Nanowire Arraysnull (Ed.)This article focuses on developing a broadband ultraviolet (UV) photodetector (PD) based on superflat, boron-doped ultrananocrystalline diamond (UNCD) nanowire (NW) arrays functionalized with platinum (Pt) nanoparticles and capable of withstanding high operating temperatures. This PD exhibits an extremely large responsivity (1,224 A/W) to 300-nm light radiation at zero bias while taking advantage of diamond’s unique stability from its ability to function at temperatures as high as 200 °C. Additionally, it has a fast response time of 17 ms.more » « less
-
With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 μm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering.more » « less