skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selection of CVD Diamond Crystals for X-ray Monochromator Applications Using X-ray Diffraction Imaging
A set of 20 single crystal diamond plates synthesized using chemical vapor deposition (CVD) was studied using X-ray diffraction imaging to determine their applicability as side-bounce (single-reflection) Laue monochromators for synchrotron radiation. The crystal plates were of optical grade (as provided by the supplier) with (001) nominal surface orientation. High dislocation density was found for all samples. Distortions in the crystal lattice were quantified for low-index Laue reflections of interests using rocking curve topography. Maps of effective radius of curvature in the scattering plane were calculated using spline interpolation of the rocking curve peak position across the studied plates. For several selected plates, nearly flat regions with large effective radius of curvature were found ( R 0 ≳ 30 - 70 m, some regions as large as 1 × 4 mm 2 ). The average width of the rocking curve for these regions was found to be about 150 μ rad (r.m.s.). These observations suggest that the selected CVD diamond plates could be used as intermediate-bandwidth monochromators refocusing the radiation source to a specific location downstream with close to 1:1 distance ratio.  more » « less
Award ID(s):
1719875
PAR ID:
10148748
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Crystals
Volume:
9
Issue:
8
ISSN:
2073-4352
Page Range / eLocation ID:
396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design and implementation of new beamlines featuring side-bounce (single-reflection) diamond monochromators at Cornell High Energy Synchrotron Source (CHESS) are described. Undulator radiation is monochromated using an interchangeable set of diamond crystal plates reflecting radiation in the horizontal (synchrotron) plane, where each crystal plate is set to one of the low-index Bragg reflections (111, 220, 311 and 400) in either Bragg or Laue reflection geometries. At the nominal Bragg angle of 18° these reflections deliver monochromated X-rays with photon energies of 9.7, 15.9, 18.65 and 22.5 keV, respectively. An X-ray mirror downstream of the diamond monochromator is used for rejection of higher radiation harmonics and for initial focusing of the monochromated beam. The characteristics of the X-ray beam entering the experimental station were measured experimentally and compared with the results of simulations. A reasonable agreement is demonstrated. It is shown that the use of selected high-dislocation-density `mosaic' diamond single-crystal plates produced using the chemical vapor deposition method yields a few-fold enhancement in the flux density of the monochromated beam in comparison with that delivered by perfect crystals under the same conditions. At present, the Functional Materials Beamline at CHESS, which is used for time-resolved in situ characterization of soft materials during processing, has been outfitted with the described setup. 
    more » « less
  2. Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 μm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30 μm2 and 2 × 40 μm2 geometry, which were milled into 30 μm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 μm source are the slit tilt and taper—where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 μm radius tungsten wire. 
    more » « less
  3. Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time. 
    more » « less
  4. Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies. 
    more » « less
  5. By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell. 
    more » « less