skip to main content


Title: Creating Engaging Exercises With Mobile Response System (MRS)
Computer Science instructors have been exploiting learning technology such as Algorithm Visualization (AV) for last few years to explain hard-to-understand algorithms to the learners through simulations and animations. In this work, we explore an active and highly engaging approach, namely, the construction of visualizations of the algorithms under study. Our approach is further augmented with automated assessment of students' in-class construction activities, which they execute as apps in their mobile devices. In this paper, we utilize case study, a step-by-step visualization of a construction exercise app, to explain how technology is leveraged to provide a richer way for learners to interact with a problem, and how instructor can acquire real-time evidence of learners' comprehension of covered lecture material. Our experimental evaluation shows the educational benefits of the proposed approach in terms of enhanced student learning, reduced drop-out rate and increased student satisfaction.  more » « less
Award ID(s):
1332531
NSF-PAR ID:
10023965
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM SIGCSE 2017 Conference
Page Range / eLocation ID:
147 to 152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The use of two‐dimensional images to teach students about three‐dimensional molecules continues to be a prevalent issue in many classrooms. As affordable visualization technologies continue to advance, there has been an increasing interest to utilize novel technology, such as augmented reality (AR), in the development of molecular visualization tools. Existing evaluations of these visual–spatial learning tools focus primarily on student performance and attitude, with little attention toward potential inequity in student participation. Our study adds to the current literature on introducing molecular visualization technology in biochemistry classrooms by examining the potential inequity in a group activity mediated by AR technology. Adapting the participatory equity framework to our specific context, we view equity and inequity in terms of access to the technological conversational floor, a social space created when people enter technology‐mediated joint endeavors. We explore three questions: What are the different ways students interact with an AR model of the potassium channel? What are salient patterns of participation that may signify inequity in classroom technology use? What is the interplay between group social dynamics and the introduction of AR technology in the context of a technology‐mediated group activity? Pairing qualitative analysis with quantitative metrics, our mixed‐methods approach produced a complex story of student participation in an AR‐mediated group activity. The patterns of student participation showed that equity and inequity in an AR‐mediated biochemistry group learning activity are fluid and multifaceted. It was observed that students who gave more explanations during group discussion also had more interactions with the AR model (i.e., they had greater access to the technological conversational floor), and their opinion of the AR model may have greater influence on how their group engage with the AR model. This study provides more nuanced ways of conceptualizing equity and inequity in biochemistry learning settings.

     
    more » « less
  2. This research work-in-progress paper investigated the application of emerging mixed reality (MR) technology in construction and engineering education. The construction industry is facing a severe shortage of skilled workforce. As the baby boomers are retiring, the younger generation, especially college students, are often criticized for their lack of professional experience and career-specific competency. To close the skills gap and accelerate the transition of college students to competent workforce, this paper proposed a new genre of learning and professional training using MR. The main promise of the MR technology resides in its ability to augment virtual contents on top of the physical reality to facilitate tacit knowledge learning, and simulate learning activities that traditionally can only be obtained from actual professional experience. An undergraduate wood framing lab was designed as a case study to explore how students might perform in this new learning and training environment. Specifically, the case study investigated if MR would facilitate student design comprehension and transfer such understanding into the knowledge and skills needed to build the wood structure. A randomly selected student control group was given traditional paper-based construction drawings to perform the same tasks with other student groups with various visualization technology assistance. Project performance and behavior of student groups were compared to determine if there was a significant difference between the control group and the experiment groups. A pair of pre- and post-survey on MR-intervened learning experience was also conducted to explore student perceptions towards this new genre of learning and training. The research design proposed in this work-in-progress study and its preliminary results could be a good reference and foundation to future research in this arena. 
    more » « less
  3. Student-centered educational system is needed for better educational outcomes. Technology enabled pedagogy has helped immensely during the pandemic times when rapid transition to remote learning was essential. This poster reports findings on year one of a two-year research study to utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. This poster describes a quasi-experimental mixed methods study on implementing mobile devices (iPad and Pencil) and a technology-enhanced curriculum in an undergraduate thermal-fluids engineering course, a foundational engineering class. The technology-enabled curriculum was fully integrated in the thermal-fluids course to deliver content and to facilitate student engagement with the content, instructor, and fellow students. This approach leveraged the social-constructivist learning theory - a connected community of learners with classroom peers and co-construction of knowledge where the instructor’s role is that of a subject matter expert who facilitates learning. To examine the impact of mobile devices on student learning, in this two-year study (year one fall 2021 - spring 2022), the following research questions were addressed, hypothesizing improvements in the areas of engagement, enhancement of learning outcomes, and extension of learning to real-life engineering scenarios: (1) Does mobile device use facilitate engagement in thermal-fluid science course content? (Engagement), (2) Does mobile device use increase learning of identified difficult concepts in thermal-fluid science courses as indicated by increased achievement scores? (Enhancement) and (3) What are student perceptions of using mobile devices for solving real-life problems? This poster will provide an overview of the research plan and describe some preliminary research efforts based on year 1 of the project efforts. This work is supported by the NSF: Research Initiation in Engineering Formation (RIEF). 
    more » « less
  4. When asked about how they deal with unforeseen problems, novice learners often describe a process of “trial and error.” This process might fairly be described as iteration, a critical step in the design process, but falls short of the practices that engineering education needs to develop. In the face of novel and multifaceted problems, future engineers must be comfortable and competent not just trying again, but identifying failure points, troubleshooting, and running systematic tests with relevant data. To examine the abilities of novice designers to test and effectively refine ideas and prototypes, we conducted qualitative analysis of structured interviews, audio, video, and designs of 11 girls, ages 9 -11, working on computational papercrafts as part of a museum-based STEAM summer camp. The projects involved design and construction of expressive paper and cardboard sculptures with gears and linkages powered by servomotors. Over the course of one day, the girls generated designs inspired by a camp theme, then had to work with mechanics, electronics and craft to create working versions that would be displayed as part of a public exhibit. Computational papercraft was selected because it lowers cost and intimidation. Our design conjecture was that by making materials familiar and abundant, learners would have more relevant knowledge, could easily modify and replicate components, and would therefore be better able to recognize potential faults and more likely to engage in testing and refinement. We also supported design and troubleshooting with a customized circuit board and an online gear simulator. In the first stage of this study, we looked at what engineering practices emerged, given these conditions. We asked: What opportunities for testing and refinement did computational papercrafts open up? What resources and tools do young learners employ when testing and refining designs? Analysis showed that technical supports for testing and refinement were successful in supporting valued testing and refinement practices as youth pursued personal goals. Use of the simulator and customized microcontroller allowed for consideration of multiple alternatives and for “trial before error.” Learners were able to conduct focused tests on subsystems of their paper machines, and to make “small bets,” keeping initial ideas and designs fluid. Inexpensive materials also allowed them to test and refine at late project stages, without feeling that they were wasting time or materials. The analysis sheds light on young students practices of testing and refinement, and how to best support young people as they begin learning trajectories in engineering. The approach is especially relevant within making-oriented engineering education and other settings working to broaden participation in engineering. 
    more » « less
  5. We describe an online citizen science platform (www.mindhive.science) for human brain and behavior research that uses a participatory science learning approach to engage learners in the full spectrum of scientific inquiry. Building on an open science philosophy, it features a collaborative study design environment comprising an experiment builder, a database of validated tasks and surveys, and a public-facing study page; a peer review center where students are able to engage with and reflect on studies designed by peers from their own schools and schools around the globe; and GDPR-compliant data collection, data management, and data visualization and interpretation functionality. We describe student-initiated research generated during the COVID-19 pandemic to illustrate how the platform supports student-teacher-scientist community partnerships for participatory learning in authentic inquiry. 
    more » « less