A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge (u,v)∈E belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general n-vertex graphs and r∈{2,3}, there exists an LCA for (2r−1)-spanners with O˜(n1+1/r) edges and sublinear probe complexity of O˜(n1−1/2r). These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every k≥1 and n-vertex graph with maximum degree Δ, there exists an LCA for O(k2) spanners with O˜(n1+1/k) edges, probe complexity of O˜(Δ4n2/3), and random seed of size polylog(n). This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with o(m) edges.
more »
« less
Local Computation Algorithms for Graphs of Non-constant Degrees
In the model of local computation algorithms (LCAs), we aim to compute the queried part of the output by examining only a small (sublinear) portion of the input. Many recently developed LCAs on graph problems achieve time and space complexities with very low dependence on n, the number of vertices. Nonetheless, these complexities are generally at least exponential in d, the upper bound on the degree of the input graph. Instead, we consider the case where parameter d can be moderately dependent on n, and aim for complexities with subexponential dependence on d, while maintaining polylogarithmic dependence on n. We present: -a randomized LCA for computing maximal independent sets whose time and space complexities are quasi-polynomial in d and polylogarithmic in n; -for constant ε>0, a randomized LCA that provides a (1−ε)-approximation to maximum matching with high probability, whose time and space complexities are polynomial in d and polylogarithmic in n.
more »
« less
- Award ID(s):
- 1650733
- PAR ID:
- 10026349
- Date Published:
- Journal Name:
- Algorithmica
- Volume:
- 77
- Issue:
- 4
- ISSN:
- 1432-0541
- Page Range / eLocation ID:
- 971-994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative distortion. For every k, a spanner with size O(n^{1+1/k}) and stretch (2k+1) can be constructed by a simple centralized greedy algorithm, and this is tight assuming Erdős girth conjecture. In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011). We provide a randomized Local Computation Agorithm (LCA) for constructing (2r-1)-spanners with Õ(n^{1+1/r}) edges and probe complexity of Õ(n^{1-1/r}) for r ∈ {2,3}, where n denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for r = 2, i.e., for constructing a 3-spanner, is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is Õ(n^{1-1/2r}) for r ∈ {2,3}. Both our algorithms and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the above-mentioned LCAs. For general k ≥ 1, we provide an LCA for constructing O(k²)-spanners with Õ(n^{1+1/k}) edges using O(n^{2/3}Δ²) neighbor-probes, improving over the Õ(n^{2/3}Δ⁴) algorithm of Parter et al. By developing a new randomized LCA for graph decomposition, we further improve the probe complexity of the latter task to be O(n^{2/3-(1.5-α)/k}Δ²), for any constant α > 0. This latter LCA may be of independent interest.more » « less
-
Meka, Raghu (Ed.)We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors.more » « less
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Let d be a (well-behaved) shortest-path metric defined on a path-connected subset of ℝ² and let 𝒟 = {D_1,…,D_n} be a set of geodesic disks with respect to the metric d. We prove that 𝒢^×(𝒟), the intersection graph of the disks in 𝒟, has a clique-based separator consisting of O(n^{3/4+ε}) cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for q-Coloring that runs in time 2^O(n^{3/4+ε}), assuming the boundaries of the disks D_i can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses O(n^{7/4+ε}) storage and can report the hop distance between any two nodes in 𝒢^×(𝒟) in O(n^{3/4+ε}) time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.more » « less
-
Megow, Nicole; Smith, Adam (Ed.)Structural balance theory studies stability in networks. Given a n-vertex complete graph G = (V,E) whose edges are labeled positive or negative, the graph is considered balanced if every triangle either consists of three positive edges (three mutual "friends"), or one positive edge and two negative edges (two "friends" with a common "enemy"). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: (i) detecting whether a given graph is balanced, or (ii) finding a partition that approximates the frustration index, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on memory efficiency. We provide randomized single-pass algorithms for: (i) determining whether an input graph is balanced with O(log n) memory, and (ii) finding a partition that induces a (1 + ε)-approximation to the frustration index with O(n ⋅ polylog(n)) memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen vertices in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from n^O(1/ε²) to O(n²log³n/ε² + n log n ⋅ (1/ε)^O(1/ε⁴)) time for (1+ε)-approximation. These results may be of independent interest.more » « less
An official website of the United States government

