skip to main content

Title: Local Computation Algorithms for Spanners
A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge (u,v)∈E belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general n-vertex graphs and r∈{2,3}, there exists an LCA for (2r−1)-spanners with O˜(n1+1/r) edges and sublinear probe complexity of O˜(n1−1/2r). These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every k≥1 and n-vertex graph with maximum more » degree Δ, there exists an LCA for O(k2) spanners with O˜(n1+1/k) edges, probe complexity of O˜(Δ4n2/3), and random seed of size polylog(n). This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with o(m) edges. « less
; ; ;
Award ID(s):
1740751 1733808 1741137
Publication Date:
Journal Name:
Innovations in Theoretical Computer Science (ITCS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer k, every n-node graph has a (2k – 1)-spanner on O(f^{1–1/k} n^{1+1/k}) edges resilient to f vertex faults, and there are examples of input graphs on which this bound cannot be improved. However, these proofs work by analyzing the output spanner of a certain exponential-time greedy algorithm. In this work, we give the first algorithm that produces vertex fault tolerant spanners of optimal size and which runs in polynomial time. Specifically, we give a randomized algorithm which takes Õ(f^{1–1/k} n^{2+1/k} + mf2)more »time. We also derandomize our algorithm to give a deterministic algorithm with similar bounds. This reflects an exponential improvement in runtime over [Bodwin-Patel PODC '19], the only previously known algorithm for constructing optimal vertex fault-tolerant spanners.« less
  2. Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms---usually sublogarithmic-time and often poly(łogłog n)-time, or even faster---for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(łog k) ε poly(łogłog n) round MPC algorithms for computing O(k^1+o(1) )-spanners in the strongly sublinear regime of localmore »memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(łog^2łog n)-round algorithm for O(łog^1+o(1) n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model.« less
  3. A spanner of a graph G is a subgraph H that approximately preserves shortest path distances in G. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which letsmore »us prove direct extensions of classic +2 and +4 unweighted spanners (both all-pairs and pairwise) to +2W and +4W weighted spanners, where W is the maximum edge weight. Specifically, we show that a weighted graph G contains all-pairs (pairwise) +2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3) and O(np2/7)) respectively. For a technical reason, the +6 unweighted spanner becomes a +8W weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that G contains all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)).« less
  4. In the model of local computation algorithms (LCAs), we aim to compute the queried part of the output by examining only a small (sublinear) portion of the input. Many recently developed LCAs on graph problems achieve time and space complexities with very low dependence on n, the number of vertices. Nonetheless, these complexities are generally at least exponential in d, the upper bound on the degree of the input graph. Instead, we consider the case where parameter d can be moderately dependent on n, and aim for complexities with subexponential dependence on d, while maintaining polylogarithmic dependence on n. Wemore »present: -a randomized LCA for computing maximal independent sets whose time and space complexities are quasi-polynomial in d and polylogarithmic in n; -for constant ε>0, a randomized LCA that provides a (1−ε)-approximation to maximum matching with high probability, whose time and space complexities are polynomial in d and polylogarithmic in n.« less
  5. We study several fundamental problems in the k-machine model, a message-passing model for large-scale distributed computations where k ≥ 2 machines jointly perform computations on a large input of size N, (typically, N ≫ k). The input is initially partitioned (randomly or in a balanced fashion) among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is a general technique for designing efficient deterministic distributed algorithms in the k-machine model using PRAM algorithms. Our technique works by efficiently simulatingmore »PRAM algorithms in the k-machine model in a deterministic way. This simulation allows us to arrive at new algorithms in the k-machine model for some problems for which no efficient k-machine algorithms are known before and also improve on existing results in the k-machine model for some problems. While our simulation allows us to obtain k-machine algorithms for any problem with a known PRAM algorithm, we mainly focus on graph problems. For an input graph on n vertices and m edges, we obtain Õ(m/k 2 ) round 4 algorithms for various graph problems such as r-connectivity for r = 1, 2, 3, 4, minimum spanning tree (MST), maximal independent set (MIS), (Δ + 1)-coloring, maximal matching, ear decomposition, and spanners under the assumption that the edges of the input graph are partitioned (randomly, or in an arbitrary, but balanced, fashion) among the k machines. For problems such as connectivity and MST, the above bound is (essentially) the best possible (up to logarithmic factors). Our simulation technique allows us to obtain the first known efficient deterministic algorithms in the k-machine model for other problems with known deterministic PRAM algorithms.« less