- Award ID(s):
- 1650733
- Publication Date:
- NSF-PAR ID:
- 10026353
- Journal Name:
- Proceedings of the annual ACM Symposium on Theory of Computing
- ISSN:
- 0737-8017
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is amore »
-
We present an $\tilde O(m+n^{1.5})$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $m$-edge, $n$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $m = \Omega(n^{1.5})$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $O(m\sqrt{n})$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $\tilde O(n^\omega)$-time algorithms [Ibarra-Moran 1981] (where currently $\omega\approx 2.373$). On sparser graphs, i.e. when $m = n^{9/8 + \delta}$ for any constant $\delta>0$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $\tilde O(m^{4/3+o(1)})$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates ofmore »
-
We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $(1+\eps)$ factor in $\tilde{O}(n^{2/3+o(1)} \epsilon^{-O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05].more »
-
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ Counting the number of
k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .Computing the All-Pairsmore »
Certifying that an
n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles, obtaining a number of new upper and lower bounds. For the important special case of counting triangles, we give a $4$-pass, $(1\pm\varepsilon)$-approximate, randomized algorithm that needs at most $\widetilde{O}(\varepsilon^{-2}\cdot m^{3/2}/T)$ space, where $m$ is the number of edges and $T$ is a promised lower bound on the number of triangles. This matches the space bound of a very recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multi-pass lower bound of $\Omega(\min\{m^{3/2}/T, m/\sqrt{T}\})$, applicable at essentially all densities $\Omega(n) \le m \le O(n^2)$. We also prove other multi-pass lower bounds in terms of various structural parameters of the input graph. Together, our results resolve a couple of open questions raised in recent work (Braverman et al., ICALP 2013). Our presentation emphasizes more general frameworks, for both upper and lower bounds. We give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial means in the special cases of counting odd cliques and odd cycles. Our results show that these problemsmore »