skip to main content


Title: Fast Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers
We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $(1+\eps)$ factor in $\tilde{O}(n^{2/3+o(1)} \epsilon^{-O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy.  more » « less
Award ID(s):
1846218
NSF-PAR ID:
10253473
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020
Page Range / eLocation ID:
1135 to 1146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an n-vertex graph G with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter є, achieves approximation factor (loglogn)2O(1/є3), and has amortized update time O(nєlogL) per operation, where L is the ratio of longest to shortest edge length. Query time for distance-query is O(2O(1/є)· logn· loglogL), and query time for shortest-path query is O(|E(P)|+2O(1/є)· logn· loglogL), where P is the path that the algorithm returns. To the best of our knowledge, even allowing any o(n)-approximation factor, no adaptive-update algorithms with better than Θ(m) amortized update time and better than Θ(n) query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting. In order to obtain these results, we consider an intermediate problem, called Recursive Dynamic Neighborhood Cover (RecDynNC), that was formally introduced in [Chuzhoy, STOC ’21]. At a high level, given an undirected edge-weighted graph G undergoing an online sequence of edge deletions, together with a distance parameter D, the goal is to maintain a sparse D-neighborhood cover of G, with some additional technical requirements. Our main technical contribution is twofolds. First, we provide a black-box reduction from APSP in fully dynamic graphs to the RecDynNC problem. Second, we provide a new deterministic algorithm for the RecDynNC problem, that, for a given precision parameter є, achieves approximation factor (loglogm)2O(1/є2), with total update time O(m1+є), where m is the total number of edges ever present in G. This improves the previous algorithm of [Chuzhoy, STOC ’21], that achieved approximation factor (logm)2O(1/є) with similar total update time. Combining these two results immediately leads to the deterministic algorithm for fully-dynamic APSP with the guarantees stated above. 
    more » « less
  2. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $\alpha$ of the graph, in, either, an amortised update time of $O(\log^2 n \log \alpha)$, or a worst-case update time of $O(\log^3 n \log \alpha)$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $O(\log n \log \alpha)$, amortised, or $O(\log ^2 n \log \alpha)$, worst-case, for the problem of maintaining an edge-orientation with at most $O(\alpha + \log n)$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $n$ and $\alpha$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $(1+\varepsilon)$ approximation of the maximum subgraph density, $\rho$, of the dynamic graph. Our algorithms have update times of $O(\varepsilon^{-6}\log^3 n \log \rho)$ worst-case, and $O(\varepsilon^{-4}\log^2 n \log \rho)$ amortised, respectively. We may output a subgraph $H$ of the input graph where its density is a $(1+\varepsilon)$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $O(\varepsilon^{-6}\log ^4 n)$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $O(\varepsilon^{-6}\log^3 n \log \alpha)$ worst-case update time algorithm for maintaining a $(1~+~\varepsilon)\textnormal{OPT} + 2$ approximation of the optimal out-orientation of a graph with adaptive arboricity $\alpha$, improving the $O(\varepsilon^{-6}\alpha^2 \log^3 n)$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $O(\alpha)$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $\Delta+1$ colouring, and matrix vector multiplication. All update times are worst-case $O(\alpha+\log^2n \log \alpha)$, where $\alpha$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $O(\alpha^2 + \log^2 n)$, and by Neiman and Solomon from STOC 2013 runs in time $O(\sqrt{m})$. We give improved running times whenever the arboricity $\alpha \in \omega( \log n\sqrt{\log\log n})$. 
    more » « less
  3. null (Ed.)
    The 2-Wasserstein distance (or RMS distance) is a useful measure of similarity between probability distributions with exciting applications in machine learning. For discrete distributions, the problem of computing this distance can be expressed in terms of finding a minimum-cost perfect matching on a complete bipartite graph given by two multisets of points A, B ⊂ ℝ2, with |A| = |B| = n, where the ground distance between any two points is the squared Euclidean distance between them. Although there is a near-linear time relative ∊-approximation algorithm for the case where the ground distance is Euclidean (Sharathkumar and Agarwal, JACM 2020), all existing relative ∊-approximation algorithms for the RMS distance take Ω(n3/2) time. This is primarily because, unlike Euclidean distance, squared Euclidean distance is not a metric. In this paper, for the RMS distance, we present a new ∊-approximation algorithm that runs in O(n^5/4 poly{log n, 1/∊}) time. Our algorithm is inspired by a recent approach for finding a minimum-cost perfect matching in bipartite planar graphs (Asathulla et al, TALG 2020). Their algorithm depends heavily on the existence of sublinear sized vertex separators as well as shortest path data structures that require planarity. Surprisingly, we are able to design a similar algorithm for a complete geometric graph that is far from planar and does not have any vertex separators. Central components of our algorithm include a quadtree-based distance that approximates the squared Euclidean distance and a data structure that supports both Hungarian search and augmentation in sublinear time. 
    more » « less
  4. We give offline algorithms for processing a sequence of 2- and 3-edge and vertex connectivity queries in a fully-dynamic undirected graph. While the current best fully-dynamic online data structures for 3-edge and 3-vertex connectivity require O(n^{2/}3) and O(n) time per update, respectively, our per-operation cost is only O(logn) , optimal due to the dynamic connectivity lower bound of Patrascu and Demaine. Our approach utilizes a divide and conquer scheme that transforms a graph into smaller equivalents that preserve connectivity information. This construction of equivalents is closely-related to the development of vertex sparsifiers, and shares important connections to several upcoming results in dynamic graph data structures, including online models. 
    more » « less
  5. We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problem where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation. 
    more » « less