Emerging distribution systems with a proliferation of distributed energy resources are facing with new challenges, such as voltage collapse and power flow congestion in unsymmetrical network configurations. As a fundamental tool that could help quantify these new challenges and further mitigate their impacts on the secure and economic operation of distribution systems, effective AC optimal power flow (ACOPF) models and solution approaches are in urgent need. This study focuses on ACOPF of three‐phase four‐conductor configured distribution systems, in which neutral conductors and ground resistances are modelled explicitly to reflect practical situation. In addition, by leveraging the Kirchhoff's current law (KCL) theorem and the effect of zero injections, voltage variables of neutrals and zero‐injection phases can be effectively eliminated. The ACOPF problem is formulated as a convex semidefinite programming (SDP) relaxation model in complex domain. In recognising possible solution inexactness of SDP relaxation model, a Karush–Kuhn–Tucker condition based process is further proposed to effectively recover feasible solutions to the original ACOPF problem by calculating a set of computational‐inexpensive non‐linear equations. Numerical studies on a modified IEEE 123‐bus system show the effectiveness of the proposed SDP relaxation model with variable reductions and the feasible solution recovery process for three‐phase four‐conductor configured distribution systems.
more »
« less
LMP decomposition with three-phase DCOPF for distribution system
This paper presents a three-phase iterative direct current optimal power flow (DCOPF) algorithm with fictitious nodal demand. Power losses and realistic distribution system operating constraints such as line flow limits and phase imbalance limits are carefully modeled in the DCOPF formulation. The definition of locational marginal prices (LMPs) is extended to three-phase distribution systems. The three-phase LMP decomposition is derived based on the Lagrangian function. The proposed algorithm is implemented in an IEEE test case and compared with three-phase alternating current optimal power flow (ACOPF) algorithm. The simulation results show that the proposed DCOPF algorithm is effective in coordinating the operations of distributed energy resources (DERs) and managing phase imbalance and thermal overloading. The proposed iterative three-phase DCOPF algorithm provides not only a computationally efficient solution but also a good approximation to the ACOPF solution.
more »
« less
- Award ID(s):
- 1637258
- PAR ID:
- 10026382
- Date Published:
- Journal Name:
- 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alternative current optimal power flow (ACOPF) problems have been studied for over fifty years, and yet the development of an optimal algorithm to solve them remains a hot and challenging topic for researchers because of their nonlinear and nonconvex nature. A number of methods based on linearization and convexification have been proposed to solve ACOPF problems, which result in near-optimal or local solutions, not optimal solutions. Nowadays, with the prevalence of machine learning, some researchers have begun to utilize this technology to solve ACOPF problems using the historical data generated by the grid operators. The present paper reviews the research on solving ACOPF problems using machine learning and neural networks and proposes future studies. This body of research is at the beginning of this area, and further exploration can be undertaken into the possibilities of solving ACOPF problems using machine learning.more » « less
-
In this paper, a data-driven method is proposed for fast cascading outage screening in power systems. The proposed method combines a deep convolutional neural network (deep CNN) and a depth-first search (DFS) algorithm. First, a deep CNN is constructed as a security assessment tool to evaluate system security status based on observable information.With its automatic feature extraction ability and the high generalization, a well-trained deep CNN can produce estimated AC optimal power flow (ACOPF) results for various uncertain operation scenarios, i.e., fluctuated load and system topology change, in a nearly computation-free manner. Second, a scenario tree is built to represent the potential operation scenarios and the associated cascading outages. The DFS algorithm is developed as a fast screening tool to calculate the expected security index value for each cascading outage path along the entire tree, which can be a reference for system operators to take predictive measures against system collapse. The simulation results of applying the proposed deep CNN and the DFS algorithm on standard test cases verify their accuracy, and the computational efficiency is thousands of times faster than the model-based traditional approach, which implies the great potential of the proposed algorithm for online applications.more » « less
-
null (Ed.)Efficient arrangement of UAVs in a swarm formation is essential to the functioning of the swarm as a temporary communication network. Such a network could assist in search and rescue efforts by providing first responders with a means of communication. We propose a user-friendly and effective system for calculating and visualizing an optimal layout of UAVs. An initial calculation to gather parameter information is followed by the proposed algorithm that generates an optimal solution. A visualization is displayed in an easy-to-comprehend manner after the proposed iterative genetic algorithm finds an optimal solution. The proposed system runs iteratively, adding UAV at each intermediate conclusion, until a solution is found. Information is passed between runs of the iterative genetic algorithm to reduce runtime and complexity. The results from testing show that the proposed algorithm yields optimal solutions more frequently than the k-means clustering algorithm. This system finds an optimal solution 80% of the time while k-means clustering is unable to find a solution when presented with a complex problem.more » « less
-
Ergodic search enables optimal exploration of an information distribution with guaranteed asymptotic coverage of the search space. However, current methods typically have exponential computational complexity and are limited to Euclidean space. We introduce a computationally efficient ergodic search method. Our contributions are two-fold: First, we develop a kernel-based ergodic metric, generalizing it from Euclidean space to Lie groups. We prove this metric is consistent with the exact ergodic metric and ensures linear complexity. Second, we derive an iterative optimal control algorithm for trajectory optimization with the kernel metric. Numerical benchmarks show our method is two orders of magnitude faster than the state-of-the-art method. Finally, we demonstrate the proposed algorithm with a peg-in-hole insertion task. We formulate the problem as a coverage task in the space of SE(3) and use a 30-second-long human demonstration as the prior distribution for ergodic coverage. Ergodicity guarantees the asymptotic solution of the peg-in-hole problem so long as the solution resides within the prior information distribution, which is seen in the 100% success rate.more » « less
An official website of the United States government

