skip to main content


Title: LMP decomposition with three-phase DCOPF for distribution system
This paper presents a three-phase iterative direct current optimal power flow (DCOPF) algorithm with fictitious nodal demand. Power losses and realistic distribution system operating constraints such as line flow limits and phase imbalance limits are carefully modeled in the DCOPF formulation. The definition of locational marginal prices (LMPs) is extended to three-phase distribution systems. The three-phase LMP decomposition is derived based on the Lagrangian function. The proposed algorithm is implemented in an IEEE test case and compared with three-phase alternating current optimal power flow (ACOPF) algorithm. The simulation results show that the proposed DCOPF algorithm is effective in coordinating the operations of distributed energy resources (DERs) and managing phase imbalance and thermal overloading. The proposed iterative three-phase DCOPF algorithm provides not only a computationally efficient solution but also a good approximation to the ACOPF solution.  more » « less
Award ID(s):
1637258
NSF-PAR ID:
10026382
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective. 
    more » « less
  2. As the number of distributed energy resources participating in power networks increases, it becomes increasingly more important to actively manage network constraints to ensure safe operation. One proposed method that has gained significant attention and implementation, particularly in Australia, is the use of dynamic operating envelopes. Operating envelopes represent net export limits set by the system operator on every node in the distribution network that change as system conditions change. They are calculated using an optimal power flow problem, frequently using a linearization or relaxation of the nonlinear power flow equations. This paper presents two case studies and some numerical analysis to explain why a second order cone relaxation of the power flow equations will lead to ineffective operating envelopes. A modification to the objective function which allows the second order cone relaxation to nearly recover the solution to the nonlinear formulation is also presented. 
    more » « less
  3. In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed, and the rest of the optimization variables (state variables) are set up as a solution to a known system of possibly nonlinear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the nonlinearity of other constraints. We implement our approach and demonstrate its performance on Matpower instances of AC optimal power flow. Although this paper focuses on quadratic problems, the approach is suitable for more general setups. 
    more » « less
  4. Learning mappings between system loading and optimal dispatch solutions has been a recent topic of interest in the power systems and machine learning communities. However, previous works have ignored practical power system constraints such as generator ramp limits and other intertemporal requirements. Additionally, optimal power flow runs are not performed independently of previous timesteps - in most cases, an OPF solution representing the current state of the system is heavily related to the OPF solution from previous timesteps. In this paper, we train a recurrent neural network, which embeds natural relationships between timesteps, to predict the optimal solution of convex power systems optimization problems with intertemporal constraints. In contrast to traditional forecasting methods, the computational benefits from this technique can allow operators to rapidly simulate forecasts of system operation and corresponding optimal solutions to provide a more comprehensive view of future system states. 
    more » « less
  5. In this paper, we study the problem of joint power control and beamforming design for simultaneous wireless information and power transfer (SWIPT) in an amplify-and-forward (AF) based two-way relaying (TWR) network. The considered system model consists of two source nodes and a relay node. Two single-antenna source nodes receive information and energy simultaneously via power splitting (PS) from the signals sent by a multi-antenna relay node. Our objective is to maximize the weighted sum energy at the two source nodes subject to quality of service (QoS) constraints and the transmit power constraints. However, the joint optimization of the relay beamforming matrix, the source transmit power and PS ratio is intractable. To find a closed-form solution of the formulated problem, we decouple the primal problem into two subproblems. In the first problem, we intend to optimize the beamforming vectors for given transmit powers and PS ratio. In the second subproblem, we optimize the remaining parameters with obtained beamformers. It is worth noting that although the corresponding subproblem are nonconvex, the optimal solution of each subproblem can be found by using certain techniques. The iterative optimization algorithm finally converges. Simulation results verify the effectiveness of the proposed joint design. 
    more » « less