Collision avoidance is a key technology enabling applications such as autonomous vehicles and robots. Various reinforcement learning techniques such as the popular Q-learning algorithms have emerged as a promising solution for collision avoidance in robotics. While spiking neural networks (SNNs), the third generation model of neural networks, have gained increased interest due to their closer resemblance to biological neural circuits in the brain, the application of SNNs to mobile robot navigation has not been well studied. Under the context of reinforcement learning, this paper aims to investigate the potential of biologically-motivated spiking neural networks for goal-directed collision avoidance in reasonably complex environments. Unlike the existing additive reward-modulated spike timing dependent plasticity learning rule (A-RM-STDP), for the first time, we explore a new multiplicative RM-STDP scheme (M-RM-STDP) for the targeted application. Furthermore, we propose a more biologically plausible feed-forward spiking neural network architecture with fine-grained global rewards. Finally, by combining the above two techniques we demonstrate a further improved solution to collision avoidance. Our proposed approaches not only completely outperform Q-learning for cases where Q-learning can hardly reach the target without collision, but also significantly outperform a baseline SNN with A-RMSTDP in terms of both success rate and the quality of navigation trajectories. 
                        more » 
                        « less   
                    
                            
                            Navigating mobile robots to target in near shortest time using reinforcement learning with spiking neural networks
                        
                    
    
            The autonomous navigation of mobile robots in unknown environments is of great interest in mobile robotics. This article discusses a new strategy to navigate to a known target location in an unknown environment using a combination of the “go-to-goal” approach and reinforcement learning with biologically realistic spiking neural networks. While the “goto-goal” approach itself might lead to a solution for most environments, the added neural reinforcement learning in this work results in a strategy that takes the robot from a starting position to a target location in a near shortest possible time. To achieve the goal, we propose a reinforcement learning approach based on spiking neural networks. The presented biologically motivated delayed reward mechanism using eligibility traces results in a greedy approach that leads the robot to the target in a close to shortest possible time. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1639995
- PAR ID:
- 10026440
- Date Published:
- Journal Name:
- Proceedings of ... International Joint Conference on Neural Networks
- ISSN:
- 2161-4393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In the realm of real-time environmental monitoring and hazard detection, multi-robot systems present a promising solution for exploring and mapping dynamic fields, particularly in scenarios where human intervention poses safety risks. This research introduces a strategy for path planning and control of a group of mobile sensing robots to efficiently explore and reconstruct a dynamic field consisting of multiple non-overlapping diffusion sources. Our approach integrates a reinforcement learning-based path planning algorithm to guide the multi-robot formation in identifying diffusion sources, with a clustering-based method for destination selection once a new source is detected, to enhance coverage and accelerate exploration in unknown environments. Simulation results and real-world laboratory experiments demonstrate the effectiveness of our approach in exploring and reconstructing dynamic fields. This study advances the field of multi-robot systems in environmental monitoring and has practical implications for rescue missions and field explorations.more » « less
- 
            Machado, Pedro (Ed.)This study emulates associative learning in rodents by using a neuromorphic robot navigating an open-field arena. The goal is to investigate how biologically inspired neural models can reproduce animal-like learning behaviors in real-world robotic systems. We constructed a neuromorphic robot by deploying computational models of spatial and sensory neurons onto a mobile platform. Different coding schemes—rate coding for vibration signals and population coding for visual signals—were implemented. The associative learning model employs 19 spiking neurons and follows Hebbian plasticity principles to associate visual cues with favorable or unfavorable locations. Our robot successfully replicated classical rodent associative learning behavior by memorizing causal relationships between environmental cues and spatial outcomes. The robot’s self-learning capability emerged from repeated exposure and synaptic weight adaptation, without the need for labeled training data. Experiments confirmed functional learning behavior across multiple trials. This work provides a novel embodied platform for memory and learning research beyond traditional animal models. By embedding biologically inspired learning mechanisms into a real robot, we demonstrate how spatial memory can be formed and expressed through sensorimotor interactions. The model’s compact structure (19 neurons) illustrates a minimal yet functional learning network, and the study outlines principles for synaptic weight and threshold design, guiding future development of more complex neuromorphic systems.more » « less
- 
            One developing approach for robotic control is the use of networks of dynamic neurons connected with conductance-based synapses, also known as Synthetic Nervous Systems (SNS). These networks are often developed using cyclic topologies and heterogeneous mixtures of spiking and non-spiking neurons, which is a difficult proposition for existing neural simulation software. Most solutions apply to either one of two extremes, the detailed multi-compartment neural models in small networks, and the large-scale networks of greatly simplified neural models. In this work, we present our open-source Python package SNS-Toolbox, which is capable of simulating hundreds to thousands of spiking and non-spiking neurons in real-time or faster on consumer-grade computer hardware. We describe the neural and synaptic models supported by SNS-Toolbox, and provide performance on multiple software and hardware backends, including GPUs and embedded computing platforms. We also showcase two examples using the software, one for controlling a simulated limb with muscles in the physics simulator Mujoco, and another for a mobile robot using ROS. We hope that the availability of this software will reduce the barrier to entry when designing SNS networks, and will increase the prevalence of SNS networks in the field of robotic control.more » « less
- 
            The advances in deep reinforcement learning re- cently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment [1]. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    