skip to main content


Title: Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming
Abstract

Although observations suggest the potential for phenotypic plasticity to allow adaptive responses to climate change, few experiments have assessed that potential. Modeling suggests thatSceloporus tristichuslizards will need increased nest depth, shade cover, or embryonic thermal tolerance to avoid reproductive failure resulting from climate change. To test for such plasticity, we experimentally examined how maternal temperatures affect nesting behavior and embryonic thermal sensitivity. The temperature regime that females experienced while gravid did not affect nesting behavior, but warmer temperatures at the time of nesting reduced nest depth. Additionally, embryos from heat‐stressed mothers displayed increased sensitivity to high‐temperature exposure. Simulations suggest that critically low temperatures, rather than high temperatures, historically limit development of our study population. Thus, the plasticity needed to buffer this population has not been under selection. Plasticity will likely fail to compensate for ongoing climate change when such change results in novel stressors.

 
more » « less
NSF-PAR ID:
10027144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
23
Issue:
3
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1075-1084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less
  2. Abstract

    Phenotypic plasticity allows organisms to adjust the timing of life‐history events in response to environmental and demographic conditions. Shifts by individuals in the timing of breeding with respect to variation in age and temperature are well documented in nature, and these changes are known to scale to affect population dynamics. However, relatively little is known about how organisms alter phenology in response to other demographic and environmental factors. We investigated how pre‐breeding temperature, breeding population density, age, and rainfall in the first month of life influenced the timing and plasticity of lay date in a population of Savannah Sparrows (Passerculus sandwichensis) monitored over 33 yr (1987–2019). Females that experienced warmer pre‐breeding temperatures tended to lay eggs earlier, as did older females, but breeding population density had no effect on lay date. Natal precipitation interacted with age to influence lay date plasticity, with females that experienced high precipitation levels as nestlings advancing lay dates more strongly over the course of their lives. We also found evidence for varied pace of life; females that experienced high natal precipitation had shorter lifespans and reduced fecundity, but more nesting attempts over their lifetimes. Rainfall during the nestling period increased through time, while population density and fecundity declined, suggesting that increased precipitation on the breeding grounds may be detrimental to breeding females and ultimately the viability of the population as a whole. Our results suggest that females adjust their laying date in response to pre‐breeding temperature, and as they age, while presenting new evidence that environmental conditions during the natal period can affect phenological plasticity and generate downstream, population‐level effects.

     
    more » « less
  3. Abstract

    Montane birds experience a range of challenges that may limit their breeding success, including nest predation and severe climactic conditions. The continuing effects of climate change are causing shifts in biotic and abiotic factors that may compound these threats to montane bird species. In northeastern montane forests, many bird species are shifting downslope, potentially as the result of increased precipitation and temperature at higher elevations. Although lower elevations might be more favorable in terms of climactic conditions, nest predation is higher at lower elevations. Thus, montane birds might be faced with the opposing pressures of adverse climactic conditions at higher elevations and increased predation at lower elevations. We monitored nests of Swainson's Thrush (Catharus ustulatus) along an elevation gradient in the White Mountain National Forest in New Hampshire in 2016, 2018, 2019, and 2021 to examine the effect of biotic and abiotic factors on daily nest survival rate (DSR). Linear time explained the most variation of DSR in AICc model comparison, indicating that DSR decreases across the breeding season. Rain intensity (mm/h) had a weak negative effect on DSR, indicating that heavier rain per hour decreases Swainson's Thrush DSR. Moreover, we found some support for a negative interaction effect of elevation in conjunction with minimum daily temperature: DSR of Swainson's Thrush nests at low elevations (281 m) increased with increasing minimum daily temperatures and decreased at high elevations with increasing minimum daily temperatures. Our results suggest nesting survival of montane breeding birds may be at risk as heavier precipitation events become more frequent and intense due to the changing climate and raises the possibility that other passerine species could be at risk in this system.

     
    more » « less
  4. Abstract Climate change, including directional shifts in weather averages and extremes and increased interannual weather variation, is influencing demography and distributions for many bird species. The Ouachita Mountains ecoregion in southeast Oklahoma and west-central Arkansas contains 2 populations of the Red-cockaded Woodpecker (Dryobates borealis, RCW), a federally endangered, cooperatively breeding species. Since this region is at the RCW’s northwestern range periphery, ecological thresholds likely are limiting for the species. Therefore, populations in this region may be more sensitive to climate change-associated weather variation and unpredictability. We used 26 years of nesting data (1991–2016) from the 2 RCW populations to determine if interannual weather variation has affected nesting phenology and productivity. For each population, we used daily temperature and precipitation data for 3 periods (30 and 60 days before nesting; 40 days overlapping the nesting period) to determine how weather influences median nesting date and average clutch size and numbers of fledglings. In a separate analysis, we used shorter time windows with individual nests as replicates to determine how discrete weather events (e.g., minimum and maximum temperatures and intense precipitation events) affect nest success and partial brood loss. For both Oklahoma and Arkansas populations, warmer early spring temperatures generally advanced nesting and increased clutch size and fledgling number. However, the effects of average precipitation varied depending on the amount and duration of precipitation in different time periods. At the nest level, most variables reflecting discrete temperature and precipitation events were unrelated to nest success and brood loss, suggesting that factors other than weather (e.g., habitat quality and predation) more strongly influenced the nesting output of individual RCW broods. Our results indicate RCWs are responding to interannual weather variation in complex and variable ways. However, warming trends may generally be having positive effects on the species at the northwestern edge of its range. 
    more » « less
  5. Abstract

    Rapid evolutionary adaptation could reduce the negative impacts of climate change if sufficient heritability of key traits exists under future climate conditions. Plastic responses to climate change could also reduce negative impacts. Understanding which populations are likely to respond via evolution or plasticity could therefore improve estimates of extinction risk. A large body of research suggests that the evolutionary and plastic potential of a population can be predicted by the degree of spatial and temporal climatic variation it experiences. However, we know little about the scale at which these relationships apply. Here, we test if spatial and temporal variation in temperature affects genetic variation and plasticity of fitness and a key thermal tolerance trait (critical thermal maximum; CTmax) at microgeographic scales using a metapopulation of Daphnia magna in freshwater rock pools. Specifically, we ask if (a) there is a microgeographic adaptation of CTmax and fitness to differences in temperature among the pools, (b) pools with greater temporal temperature variation have more genetic variation or plasticity in CTmax or fitness, and (c) increases in temperature affect the heritability of CTmax and fitness. Although we observed genetic variation and plasticity in CTmax and fitness, and differences in fitness among pools, we did not find support for the predicted relationships between temperature variation and genetic variation or plasticity. Furthermore, the genetic variation and plasticity we observed in CTmax are unlikely sufficient to reduce the impacts of climate change. CTmax plasticity was minimal and heritability was 72% lower when D. magna developed at the higher temperatures predicted under climate change. In contrast, the heritability of fitness increased by 53% under warmer temperatures, suggesting an increase in overall evolutionary potential unrelated to CTmax under climate change. More research is needed to understand the evolutionary and plastic potential under climate change and how that potential will be altered in future climates.

     
    more » « less