Well-designed instructional videos are powerful tools for helping students learn and prompting students to use generative strategies while learning from videos further bolsters their effectiveness. However, little is known about how individual differences in motivational factors, such as achievement goals, relate to how students learn within multimedia environments that include instructional videos and generative strategies. Therefore, in this study, we explored how achievement goals predicted undergraduate students’ behaviors when learning with instructional videos that required students to answer practice questions between videos, as well as how those activities predicted subsequent unit exam performance one week later. Additionally, we tested the best measurement models for modeling achievement goals between traditional confirmatory factor analysis and bifactor confirmatory factor analysis. The bifactor model fit our data best and was used for all subsequent analyses. Results indicated that stronger mastery goal endorsement predicted performance on the practice questions in the multimedia learning environment, which in turn positively predicted unit exam performance. In addition, students’ time spent watching videos positively predicted practice question performance. Taken together, this research emphasizes the availing role of adaptive motivations, like mastery goals, in learning from instructional videos that prompt the use of generative learning strategies.
more »
« less
Toward a New Model of Science Learning, Teaching, and Communication
ABSTRACT Sci-Toons is a new, experimental, teaching and learning approach that engages students in materials science research via interaction with experts, narrative, visual representations, iterative feedback and multimedia platforms. Based on a model (the Multimedia Theoretical Learning Framework) and multimedia design principles, Sci-Toon Creation Group (SCG) members, which include both science and non-science majors, work with faculty to produce video animations dealing with scientific topics. The creative process of producing scripts for two selected Sci-Toons videos dealing with materials science subjects (Graphene and Conductive Polymers) are discussed; initial and final versions of each are combined through use of Word Clouds. The videos that are produced are distributed via the internet, providing instruction and information about materials sciences and other STEM topics. Demographic data about the types of individuals downloading these Sci-Toons are provided. We conclude that Sci-Toons can be used in both formal and informal educational settings for science learning and teaching as well as in communicating materials science concepts to broad audiences including females and underrepresented minorities students.
more »
« less
- Award ID(s):
- 1663296
- PAR ID:
- 10027621
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 1
- Issue:
- 56
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 3709 to 3714
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To be successful in their future careers, students must be able to process information, devise creative solutions, and apply previous knowledge to new situations. Learning through only traditional teaching practices that rely heavily on lecture format and memorization is insufficient to prepare students for the future. Interactive project-based learning that experiences productive failure provides the opportunity for students to problem-solve novel topics and potentially fail at finding the solution. Through explanation, elaboration, comparison of iterations, refinement, and implementations, students can be more prepared to solve future problems. Our study examined the benefits of productive failure on high school students from both formal and informal learning environments working in collaborative teams to design and create 3D plant models. This STEAM project integrates science, design, and technology through innovative learning experiences in plant and agricultural science using emergent technologies. This learning experience encourages students to work together in collaborative teams of self-identified science, technophile, and art students to create 3D models of plants used in research at the Donald Danforth Plant Science Center in St. Louis, MO. Students learn about scientific research, the importance of plants in our society, and practice science communication skills. To create the 3D models, students must learn-by-doing to become proficient in using previously unfamiliar 3D modeling software where their teachers are merely facilitators. Students become active participants in their own learning by overcoming challenges through research, troubleshooting, teamwork, and perseverance. We used a mixed-method assessment approach comparing pre- and post-reflection questions. Students experience many challenges with learning the 3D model programs. They reported that they overcame difficulties working with the 3D modeling programs primarily through help from others and consulting outside resources, such as YouTube videos, as well as through continued effort. Students indicated that they faced challenges when creating their models but recognized that this project was a learning experience. Productive failure through the process of struggling and learning from one’s mistakes can encourage positive learning outcomes and give students a better ability to overcome future challenges.more » « less
-
To be successful in their future careers, students must be able to process information, devise creative solutions, and apply previous knowledge to new situations. Learning through only traditional teaching practices that rely heavily on lecture format and memorization is insufficient to prepare students for the future. Interactive project-based learning that experiences productive failure provides the opportunity for students to problem-solve novel topics and potentially fail at finding the solution. Through explanation, elaboration, comparison of iterations, refinement, and implementations, students can be more prepared to solve future problems. Our study examined the benefits of productive failure on high school students from both formal and informal learning environments working in collaborative teams to design and create 3D plant models. This STEAM project integrates science, design, and technology through innovative learning experiences in plant and agricultural science using emergent technologies. This learning experience encourages students to work together in collaborative teams of self-identified science, technophile, and art students to create 3D models of plants used in research at the Donald Danforth Plant Science Center in St. Louis, MO. Students learn about scientific research, the importance of plants in our society, and practice science communication skills. To create the 3D models, students must learn-by-doing to become proficient in using previously unfamiliar 3D modeling software where their teachers are merely facilitators. Students become active participants in their own learning by overcoming challenges through research, troubleshooting, teamwork, and perseverance. We used a mixed-method assessment approach comparing pre- and post-reflection questions. Students experience many challenges with learning the 3D model programs. They reported that they overcame difficulties working with the 3D modeling programs primarily through help from others and consulting outside resources, such as YouTube videos, as well as through continued effort. Students indicated that they faced challenges when creating their models but recognized that this project was a learning experience. Productive failure through the process of struggling and learning from one’s mistakes can encourage positive learning outcomes and give students a better ability to overcome future challenges.more » « less
-
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they perceived collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.more » « less
-
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they identified collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.more » « less
An official website of the United States government

