skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Write-Optimized Skip Lists
The skip list is an elegant dictionary data structure that is com- monly deployed in RAM. A skip list with N elements supports searches, inserts, and deletes in O(logN) operations with high probability (w.h.p.) and range queries returning K elements in O(log N + K) operations w.h.p. A seemingly natural way to generalize the skip list to external memory with block size B is to “promote” with probability 1/B, rather than 1/2. However, there are practical and theoretical obsta- cles to getting the skip list to retain its efficient performance, space bounds, and high-probability guarantees. We give an external-memory skip list that achieves write- optimized bounds. That is, for 0 < ε < 1, range queries take O(logBε N + K/B) I/Os w.h.p. and insertions and deletions take O((logBε N)/B1−ε) amortized I/Os w.h.p. Our write-optimized skip list inherits the virtue of simplicity from RAM skip lists. Moreover, it matches or beats the asymptotic bounds of prior write-optimized data structures such as Bε trees or LSM trees. These data structures are deployed in high-performance databases and file systems.  more » « less
Award ID(s):
1637458
PAR ID:
10027800
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
PODS '17 Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dictionaries remain the most well studied class of data structures. A dictionary supports insertions, deletions, membership queries, and usually successor, predecessor, and extract-min. In a RAM, all such operations take O(log n) time on n elements. Dictionaries are often cross-referenced as follows. Consider a set of tuples {〈ai,bi,ci…〉}. A database might include more than one dictionary on such a set, for example, one indexed on the a ‘s, another on the b‘s, and so on. Once again, in a RAM, inserting into a set of L cross-referenced dictionaries takes O(L log n) time, as does deleting. The situation is more interesting in external memory. On a Disk Access Machine (DAM), B-trees achieve O(logB N) I/Os for insertions and deletions on a single dictionary and K-element range queries take optimal O(logB N + K/B) I/Os. These bounds are also achievable by a B-tree on cross-referenced dictionaries, with a slowdown of an L factor on insertion and deletions. In recent years, both the theory and practice of external- memory dictionaries has been revolutionized by write- optimization techniques. A dictionary is write optimized if it is close to a B-tree for query time while beating B-trees on insertions. The best (and optimal) dictionaries achieve a substantially improved insertion and deletion cost of amortized I/Os on a single dictionary while maintaining optimal O(log1+B∊ N + K/B)- I/O range queries. Although write optimization still helps for insertions into cross-referenced dictionaries, its value for deletions would seem to be greatly reduced. A deletion into a cross- referenced dictionary only specifies a key a. It seems to be necessary to look up the associated values b, c … in order to delete them from the other dictionaries. This takes Ω(logB N) I/Os, well above the per-dictionary write-optimization budget of So the total deletion cost is In short, for deletions, write optimization offers an advantage over B-trees in that L multiplies a lower order term, but when L = 2, write optimization seems to offer no asymptotic advantage over B-trees. That is, no known query- optimal solution for pairs of cross-referenced dictionaries seem to beat B-trees for deletions. In this paper, we show a lower bound establishing that a pair of cross-referenced dictionaries that are optimal for range queries and that supports deletions cannot match the write optimization bound available to insert-only dictionaries. This result thus establishes a limit to the applicability of write-optimization techniques on which many new databases and file systems are based. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974782.99 
    more » « less
  2. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N. 
    more » « less
  3. The ranked (or top-k) document retrieval problem is defined as follows: preprocess a collection{T1,T2,… ,Td}ofdstrings (called documents) of total lengthninto a data structure, such that for any given query(P,k), wherePis a string (called pattern) of lengthp ≥ 1andk ∈ [1,d]is an integer, the identifiers of thosekdocuments that are most relevant toPcan be reported, ideally in the sorted order of their relevance. The seminal work by Hon et al. [FOCS 2009 and Journal of the ACM 2014] presented anO(n)-space (in words) data structure withO(p+klogk)query time. The query time was later improved toO(p+k)[SODA 2012] and further toO(p/logσn+k)[SIAM Journal on Computing 2017] by Navarro and Nekrich, whereσis the alphabet size. We revisit this problem in the external memory model and present three data structures. The first one takesO(n)-space and answer queries inO(p/B+ logBn + k/B+log*(n/B)) I/Os, whereBis the block size. The second one takesO(nlog*(n/B)) space and answer queries in optimalO(p/B+ logBn + k/B)I/Os. In both cases, the answers are reported in the unsorted order of relevance. To handle sorted top-kdocument retrieval, we present anO(nlog(d/B))space data structure with optimal query cost. 
    more » « less
  4. In-memory data management systems, such as key-value stores, have become an essential infrastructure in today's big-data processing and cloud computing. They rely on efficient index structures to access data. While unordered indexes, such as hash tables, can perform point search with O(1) time, they cannot be used in many scenarios where range queries must be supported. Many ordered indexes, such as B+ tree and skip list, have a O(log N) lookup cost, where N is number of keys in an index. For an ordered index hosting billions of keys, it may take more than 30 key-comparisons in a lookup, which is an order of magnitude more expensive than that on a hash table. With availability of large memory and fast network in today's data centers, this O(log N) time is taking a heavy toll on applications that rely on ordered indexes. In this paper we introduce a new ordered index structure, named Wormhole, that takes O(log L) worst-case time for looking up a key with a length of L. The low cost is achieved by simultaneously leveraging strengths of three indexing structures, namely hash table, prefix tree, and B+ tree, to orchestrate a single fast ordered index. Wormhole's range operations can be performed by a linear scan of a list after an initial lookup. This improvement of access efficiency does not come at a price of compromised space efficiency. Instead, Wormhole's index space is comparable to those of B+ tree and skip list. Experiment results show that Wormhole outperforms skip list, B+ tree, ART, and Masstree by up to 8.4x, 4.9x, 4.3x, and 6.6x in terms of key lookup throughput, respectively. 
    more » « less
  5. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative—dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a historyindependent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B logN/ loglogN) with high probability in set size N. 
    more » « less