skip to main content


Title: Close packing effects on clean and dirty snow albedo and associated climatic implications: CLOSE PACKING EFFECTS ON SNOW ALBEDO
Award ID(s):
1660587
NSF-PAR ID:
10028702
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
8
ISSN:
0094-8276
Page Range / eLocation ID:
3719 to 3727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite, and pyrite as Fe sources for a Chloromonas brevispina -bacterial coculture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo 90 -bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina coculture also increased the rate of Fo 90 dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified Gammaproteobacteria , Betaproteobacteria , and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo 90 was bioavailable to Chloromonas brevispina snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo 90 -containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo 90 dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales. 
    more » « less
  2. Abstract

    Snow algae are ubiquitous in the Pacific Northwest cryosphere in the summer where snowmelt is an important contribution to regional watersheds. However, less attention has been given to biological impurities as drivers of snowmelt compared to inorganic light-absorbing particles. Here we map snow algae near Mt. Baker with a multispectral camera on an uncrewed aerial vehicle using (1) principal components and (2) spectral indexing. The two approaches are tested under differing bloom states and verified with coincident algal pigment and cell count data. During high bloom intensity we found an average instantaneous radiative forcing of 237 W m−2with a maximum of 360 W m−2. This translated to 1,508 ± 536 m3of melted snow water equivalent in the 0.1 km2basin. These results demonstrate snow algae contribute to snowmelt at mid-latitudes and the potential for uncrewed autonomous vehicles to map snow algae over expansive areas of the cryosphere.

     
    more » « less