skip to main content

Title: Long Minority‐Carrier Diffusion Length and Low Surface‐Recombination Velocity in Inorganic Lead‐Free CsSnI 3 Perovskite Crystal for Solar Cells

Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017cm−3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018cm−3, and ≈16 nm, respectively. CsSnI3SCs also exhibit very low surface recombination velocity of ≈2 × 103cm s−1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3SCs solar cells, highlighting their great potential.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current‐voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter‐laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)3halide perovskite thin‐film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance‐free JV‐curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra‐grain charge transport is characterized by terahertz sum mobilities of ≈32 cm2V−1s−1. Drift‐diffusion simulations indicate that these intra‐grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best‐realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented.

    more » « less
  2. Abstract

    Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1−xSnxIBr2perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a highVocof 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.

    more » « less
  3. Abstract

    Lead halide perovskites have recently emerged as promising absorbers for fabricating low‐cost and high‐efficiency thin‐film solar cells. The record power conversion efficiency of lead halide perovskite‐based solar cells has rapidly increased from 3.8% in 2009 to 22.1% in early 2016. Such rapid improvement is attributed to the superior and unique photovoltaic properties of lead halide perovskites, such as the extremely high optical absorption coefficients and super‐long photogenerated carrier lifetimes and diffusion lengths that are not seen in any other polycrystalline thin‐film solar cell materials. In the past a few years, theoretical approaches have been extensively applied to understand the fundamental mechanisms responsible for the superior photovoltaic properties of lead halide perovskites and have gained significant insights. This review article highlights the important theoretical results reported in literature for the understanding of the unique structural, electronic, optical, and defect properties of lead halide perovskite materials. For comparison, we also review the theoretical results reported in literature for some lead‐free perovskites, double perovskites, and nonperovskites.

    more » « less
  4. Abstract

    Lead halide perovskites have recently attracted intensive attention as competitive alternative candidates of legacy compound materials CdTe, CdZnTe, and TlBr for high sensitivity energy‐resolving gamma‐ray detection at room temperature. However, the use of lead in these lead halide perovskites, which is necessary for increasing the stopping power of gamma radiation, poses a serious environmental concern due to the high toxicity of lead. In this regard, environmental‐friendly perovskite‐based gamma‐ray detector materials with key energy‐resolving capabilities are highly desired. Here, the gamma energy‐resolving performance of a new class of all‐inorganic and lead‐free Cs2AgBiBr6double perovskite single crystals (SCs) is reported. Two types of Cs2AgBiBr6SCs, prepared by Bi‐normal and Bi‐poor precursor solutions, respectively, have been grown. Their mobilities and response to gamma radiation are presented. Density of trap states in Bi‐poor Cs2AgBiBr6SCs (2.65 × 109 cm−3) is one order of magnitude lower than that in Bi‐normal Cs2AgBiBr6SCs (3.85 × 1010 cm−3). Using laser‐induced photocurrent measurements, the obtained mobility–lifetime (μ–τ) product in Bi‐poor Cs2AgBiBr6SCs is 1.47 × 10−3 cm2 V−1, indicating their great potentials for gamma‐ray detection. Further, the fabricated detector based on Bi‐poor Cs2AgBiBr6SC shows response to 59.5 keV gamma‐ray with an energy resolution of 13.91%.

    more » « less
  5. Abstract

    In recent years, hybrid perovskite solar cells (HPSCs) have received considerable research attention due to their impressive photovoltaic performance and low‐temperature solution processing capability. However, there remain challenges related to defect passivation and enhancing the charge carrier dynamics of the perovskites, to further increase the power conversion efficiency of HPSCs. In this work, the use of a novel material, phenylhydrazinium iodide (PHAI), as an additive in MAPbI3perovskite for defect minimization and enhancement of the charge carrier dynamics of inverted HPSCs is reported. Incorporation of the PHAI in perovskite precursor solution facilitates controlled crystallization, higher carrier lifetime, as well as less recombination. In addition, PHAI additive treated HPSCs exhibit lower density of filled trap states (1010cm−2) in perovskite grain boundaries, higher charge carrier mobility (≈11 × 10−4cm2V−1s), and enhanced power conversion efficiency (≈18%) that corresponds to a ≈20% improvement in comparison to the pristine devices.

    more » « less