skip to main content


Search for: All records

Award ID contains: 1538893

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.

     
    more » « less
  2. Abstract

    The surface composition of perovskite films is very sensitive to film processing and can deviate from the optimal, which generates unfavorable defects and results in efficiency loss in solar cells and slow response speed in photodetectors. An argon plasma treatment is introduced to modify the surface composition by tuning the ratio of organic and inorganic components as well as defect type before deposition of the passivating layer. It can efficiently enhance the charge collection across the perovskite–electrode interface by suppressing charge recombination. Therefore, perovskite solar cells with argon plasma treatment yield enhanced efficiency to 20.4% and perovskite photodetectors can reach their fastest respond speed, which is solely limited by the carrier mobility.

     
    more » « less
  3. Abstract

    Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions.

     
    more » « less