The development of stable and efficient hydrogen evolution reaction (HER) catalysts is essential for the production of hydrogen as a clean energy resource. A combination of experiment and theory demonstrates that the normally inert basal planes of 2D layers of MoS2can be made highly catalytically active for the HER when alloyed with rhenium (Re). The presence of Re at the ≈50% level converts the material to a stable distorted tetragonal (DT) structure that shows enhanced HER activity as compared to most of the MoS2‐based catalysts reported in the literature. More importantly, this new alloy catalyst shows much better stability over time and cycling than lithiated 1T‐MoS2. Density functional theory calculations find that the role of Re is only to stabilize the DT structure, while catalysis occurs primarily in local Mo‐rich DT configurations, where the HER catalytic activity is very close to that in Pt. The study provides a new strategy to improve the overall HER performance of MoS2‐based materials via chemical doping.
Molybdenum sulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) owing to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the number of active sites in MoS2. In this work, a simple method of fabricating polycrystalline multilayer MoS2on Mo foil for efficient hydrogen evolution is demonstrated by controlling the sulfur (S) vacancy concentration, which can introduce new bands and lower the hydrogen adsorption free energy (Δ
- PAR ID:
- 10030911
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 4
- Issue:
- 16
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract 1T-MoS2and single-atom modified analogues represent a highly promising class of low-cost catalysts for hydrogen evolution reaction (HER). However, the role of single atoms, either as active species or promoters, remains vague despite its essentiality toward more efficient HER. In this work, we report the unambiguous identification of Ni single atom as key active sites in the basal plane of 1T-MoS2(Ni@1T-MoS2) that result in efficient HER performance. The intermediate structure of this Ni active site under catalytic conditions was captured by in situ X-ray absorption spectroscopy, where a reversible metallic Ni species (Ni0) is observed in alkaline conditions whereas Ni remains in its local structure under acidic conditions. These insights provide crucial mechanistic understanding of Ni@1T-MoS2HER electrocatalysts and suggest that the understanding gained from such in situ studies is necessary toward the development of highly efficient single-atom decorated 1T-MoS2electrocatalysts.
-
Abstract Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2through nitrogen (N) doping is demonstrated. N‐doped Ni3S2nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm−2and an excellent exchange current density of 0.42 mA cm−2in 1.0
m KOH electrolyte. The mass activity of 16.9 mA mg−1and turnover frequency of 2.4 s−1obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts. -
Abstract The development of non‐noble metal materials for efficient hydrogen evolution reaction (HER) in wide pH range is still a challenge at present. Herein, a predesigned polyoxometalate (POM)‐based metal–organic polymer {L3Co2 · 6H2O}[H3GeMo12O40] · 9H2O (L = 1,2,4‐triazole) is employed as bimetallic source together with thiourea converting to CoS2@MoS2on carbon cloth (CC) (abbreviated to CoS2@MoS2@CC) for the first time. Impressively, the CoS2@MoS2in the form of vertically interconnected nanoarrays with multiple interfaces are grown in situ on CC and act as electrodes directly for HER. The CoS2@MoS2@CC‐30h composite exhibits superb activity and long‐durability in both acidic and alkaline media. Low overpotential is achieved in 0.5
m H2SO4(65 mV) and 1.0m KOH (87 mV) for 10 mA cm−2versus RHE, which overmatch major MoS2‐/POM‐based electrocatalysts. This work therefore may shed substantial lights on designing active and durable molybdenum‐based bi‐/polymetallic sulfide from variable POM‐based metal–organic polymers for electrocatalytic hydrogen evolution reaction in wide pH range. -
null (Ed.)This paper reports a highly active and stable nonprecious metal electrocatalyst based on bimetallic nanoscale nickel molybdenum nitride developed for the hydrogen evolution reaction (HER). A composite of 7 nm Ni 2 Mo 3 N nanoparticles grown on nickel foam (Ni 2 Mo 3 N/NF) was prepared through a simple and economical synthetic method involving one-step annealing of Ni foam, MoCl 5 , and urea without a Ni precursor. The Ni 2 Mo 3 N/NF exhibits high activity with low overpotential ( η 10 of 21.3 mV and η 100 of 123.8 mV) and excellent stability for the HER, achieving one of the best performances among state-of-the-art transition metal nitride based catalysts in alkaline media. Supporting density functional theory (DFT) calculations indicate that N sites in Ni 2 Mo 3 N with a N–Mo coordination number of four have a hydrogen adsorption energy close to that of Pt and hence may be responsible for the enhanced HER performance.more » « less