skip to main content


Title: Multi‐Interface‐Modulated CoS 2 @MoS 2 Nanoarrays Derived by Predesigned Germanomolybdate Polymer Showing Ultrahighly Electrocatalytic Activity for Hydrogen Evolution Reaction in Wide pH Range
Abstract

The development of non‐noble metal materials for efficient hydrogen evolution reaction (HER) in wide pH range is still a challenge at present. Herein, a predesigned polyoxometalate (POM)‐based metal–organic polymer {L3Co2 · 6H2O}[H3GeMo12O40] · 9H2O (L = 1,2,4‐triazole) is employed as bimetallic source together with thiourea converting to CoS2@MoS2on carbon cloth (CC) (abbreviated to CoS2@MoS2@CC) for the first time. Impressively, the CoS2@MoS2in the form of vertically interconnected nanoarrays with multiple interfaces are grown in situ on CC and act as electrodes directly for HER. The CoS2@MoS2@CC‐30h composite exhibits superb activity and long‐durability in both acidic and alkaline media. Low overpotential is achieved in 0.5mH2SO4(65 mV) and 1.0mKOH (87 mV) for 10 mA cm−2versus RHE, which overmatch major MoS2‐/POM‐based electrocatalysts. This work therefore may shed substantial lights on designing active and durable molybdenum‐based bi‐/polymetallic sulfide from variable POM‐based metal–organic polymers for electrocatalytic hydrogen evolution reaction in wide pH range.

 
more » « less
NSF-PAR ID:
10455543
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
7
Issue:
19
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2through nitrogen (N) doping is demonstrated. N‐doped Ni3S2nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm−2and an excellent exchange current density of 0.42 mA cm−2in 1.0mKOH electrolyte. The mass activity of 16.9 mA mg−1and turnover frequency of 2.4 s−1obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts.

     
    more » « less
  2. Abstract

    2D early transition metal carbide and nitride MXenes have intriguing properties for electrochemical energy storage and electrocatalysis. These properties can be manipulated by modifying the basal plane chemistry. Here, mixed transition metal nitride MXenes, M‐Ti4N3Tx(M = V, Cr, Mo, or Mn; Tx= O and/or OH), are developed by modifying pristine exfoliated Ti4N3TxMXene with V, Cr, Mo, and Mn salts using a simple solution‐based method. The resulting mixed transition metal nitride MXenes contain 6–51% metal loading (cf. Ti) that exhibit rich electrochemistry including highly tunable hydrogen evolution reaction (HER) electrocatalytic activity in a 0.5mH2SO4electrolyte as follows: V‐Ti4N3Tx> Cr‐Ti4N3Tx> Mo‐Ti4N3Tx> Mn‐Ti4N3Tx> pristine Ti4N3Txwith overpotentials as low as 330 mV at −10 mA cm−2with a charge‐transfer resistance of 70 Ω. Scanning electrochemical microscopy (SECM) reveals the electrochemical activity of individual MXene flakes. The SECM data corroborate the bulk HER activity trend for M‐Ti4N3Txas well as provide the first experimental evidence that HER results from catalysis on the MXene basal plane. These electrocatalytic results demonstrate a new pathway to tune the electrochemical properties of MXenes for water splitting and related electrochemical applications.

     
    more » « less
  3. Molybdenum sulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) owing to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the number of active sites in MoS2. In this work, a simple method of fabricating polycrystalline multilayer MoS2on Mo foil for efficient hydrogen evolution is demonstrated by controlling the sulfur (S) vacancy concentration, which can introduce new bands and lower the hydrogen adsorption free energy (ΔGH). For the first time, theoretical and experimental results show that the HER performance of synthesized MoS2with S vacancy can be further enhanced by the very small amount of platinum (Pt) decoration, which can introduce new gap states and more catalytic sites in real space with suitable free energy. The fabricated hybrid electrocatalyst exhibits significantly smaller Tafel slope of 38 mV dec−1and better HER electrocatalytic activity compared to previous works. This approach provides a simple pathway to design low‐cost, efficient and sizable hydrogen‐evolving electrode by simultaneously tuning the MoS2band structure and active sites.

     
    more » « less
  4. Abstract

    Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results.

     
    more » « less
  5. Abstract

    Alumina is one of the most common and stable metal oxides in nature, which has been developed as a novel adsorbent in enrichment of biomolecules due to its excellent affinity to phosphor or amino groups. In this study, ordered mesoporous alumina (OMA) with interconnected mesopores and surface acidic property is synthesized through a solvent evaporation induced co‐assembly process using poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer as a template and aluminium acetylacetonate (Al(acac)3) as the aluminium source. The pore size (12.1–19.7 nm), pore window size (3.5–9.0 nm) and surface acidity (0.092–0.165 mmol g−1) can be precisely adjusted. The highly porous structure endows the OMA materials with high hemoglobin (Hb) immobilization capacity (170 mg g−1). The obtained Hb@OMA composite is used as an electrocatalyst of biosensor for convienet and fast detection of hydrogen peroxide (H2O2) with a low H2O2detection limit of 1.7 × 10−8mand a wide linear range of 2.5 × 10−8to 5.0 × 10−5m. Moreover, the Hb@OMA sensors show a good performance in real time detection of H2O2released from Homo sapiens bone osteosarcoma, indicating their potential application in complex biological processes.

     
    more » « less