skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elastic Sheets, Phase Surfaces, and Pattern Universes
We connect the theories of the deformation of elastic surfaces and phase surfaces arising in the description of almost periodic patterns. In particular, we show parallels between asymptotic expansions for the energy of elastic surfaces in powers of the thicknesshand the free energy for almost periodic patterns expanded in powers of ε, the inverse aspect ratio of the pattern field. For sheets as well as patterns, the resulting energy can be expressed in terms of natural geometric invariants, the first and second fundamental forms of the elastic surface, respectively, the phase surface. We discuss various results for these energies and also address some of the outstanding questions. We extend previous work on point (in two dimensional) and loop (in three dimensional) disclinations and connect their topological indices with the condensation of Gaussian curvature of the phase surface. Motivated by this connection with the charge and spin of pattern quarks and leptons, we lay out an ambitious program to build a multiscale universe inspired by patterns in which the short (spatial and temporal) scales are given by a nearly periodic microstructure and whose macroscopic/slowly varying/averaged behaviors lead to a hierarchy of structures and features on much longer scales including analogs to quarks and leptons, dark matter, dark energy, and inflationary cosmology. One of our new findings is an interpretation of dark matter as the energy density in a pattern field. The associated gravitational forces naturally result in galactic rotation curves that are consistent with observations, while simultaneously avoiding some of the small‐scale difficulties of the standard ΛCDM (cold dark matter) paradigm in cosmology.  more » « less
Award ID(s):
1740858
PAR ID:
10033394
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
139
Issue:
2
ISSN:
0022-2526
Page Range / eLocation ID:
p. 322-368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. 
    more » « less
  2. null (Ed.)
    Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app. 
    more » « less
  3. While the standard model accurately describes data at the electroweak scale without the inclusion of gravity, beyond the standard model, physics is increasingly intertwined with gravitational phenomena and cosmology. Thus, the gravity-mediated breaking of supersymmetry in supergravity models leads to sparticle masses, which are gravitational in origin, observable at TeV scales and testable at the LHC, and supergravity also provides a candidate for dark matter, a possible framework for inflationary models and for models of dark energy. Further, extended supergravity models and string and D-brane models contain hidden sectors, some of which may be feebly coupled to the visible sector, resulting in heat exchange between the visible and hidden sectors. Because of the couplings between the sectors, both particle physics and cosmology are affected. The above implies that particle physics and cosmology are intrinsically intertwined in the resolution of essentially all of the cosmological phenomena, such as dark matter and dark energy, and in the resolution of cosmological puzzles, such as the Hubble tension and the EDGES anomaly. Here, we give a brief overview of the intertwining and its implications for the discovery of sparticles, as well as the resolution of cosmological anomalies and the identification of dark matter and dark energy as major challenges for the coming decades. 
    more » « less
  4. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app. 
    more » « less
  5. A<sc>bstract</sc> In this paper we study a near-continuum dark matter model, in which dark sector consists of a tower of closely spaced states with weak-scale masses. We construct a five-dimensional model which naturally realizes this spectrum. The dark matter is described by a bulk field, which interacts with the brane-localized Standard Model sector via aZportal. We then study collider signatures of this model. Near-continuum dark matter states produced in a collider undergo cascade decays, resulting in events with high multiplicity of jets and leptons, large missing energy, and displaced vertices. A custom-built Monte Carlo tool described in this paper allows for detailed simulation of the signal events. We present results of such simulations for the case of electron-positron collisions. 
    more » « less