A<sc>bstract</sc> We study a class of models in which the particle that constitutes dark matter arises as a composite state of a strongly coupled hidden sector. The hidden sector interacts with the Standard Model through the neutrino portal, allowing the relic abundance of dark matter to be set by annihilation into final states containing neutrinos. The coupling to the hidden sector also leads to the generation of neutrino masses through the inverse seesaw mechanism, with composite hidden sector states playing the role of the singlet neutrinos. We focus on the scenario in which the hidden sector is conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. We construct a holographic realization of this framework based on the Randall-Sundrum setup and explore the implications for experiments. We determine the current constraints on this scenario from direct and indirect detection, lepton flavor violation and collider experiments and explore the reach of future searches. We show that in the near future, direct detection experiments and searches forμ→econversion will be able to probe new parameter space. At colliders, dark matter can be produced in association with composite singlet neutrinos via Drell Yan processes or in weak decays of hadrons. We show that current searches at the Large Hadron Collider have only limited sensitivity to this new production channel and we comment on how the reconstruction of the singlet neutrinos can potentially expand the reach. 
                        more » 
                        « less   
                    
                            
                            Collider signatures of near-continuum dark matter
                        
                    
    
            A<sc>bstract</sc> In this paper we study a near-continuum dark matter model, in which dark sector consists of a tower of closely spaced states with weak-scale masses. We construct a five-dimensional model which naturally realizes this spectrum. The dark matter is described by a bulk field, which interacts with the brane-localized Standard Model sector via aZportal. We then study collider signatures of this model. Near-continuum dark matter states produced in a collider undergo cascade decays, resulting in events with high multiplicity of jets and leptons, large missing energy, and displaced vertices. A custom-built Monte Carlo tool described in this paper allows for detailed simulation of the signal events. We present results of such simulations for the case of electron-positron collisions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10521437
- Publisher / Repository:
- 10.1007/JHEP05(2024)215
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> Light dark matter particles may be produced in electron and positron beam dumps of the International Linear Collider (ILC). We propose an experimental setup to search for such events, the Beam-Dump eXperiment at the ILC (ILC-BDX). The setup consists of a muon shield placed behind the beam dump, followed by a multi-layer tracker and an electromagnetic calorimeter. The calorimeter can detect electron recoils due to elastic scattering of dark matter particles produced in the dump, while the tracker is sensitive to decays of excited dark-sector states into the dark matter particle. We study the production, decay and scattering of sub-GeV dark matter particles in this setup in several models with a dark photon mediator. Taking into account beam-related backgrounds due to neutrinos produced in the beam dump as well as the cosmic-ray background, we evaluate the sensitivity reach of the ILC-BDX experiment. We find that the ILC-BDX will be able to probe interesting regions of the model parameter space and, in many cases, reach well below the relic target.more » « less
- 
            A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling.more » « less
- 
            A<sc>bstract</sc> A search is presented for new particles produced in proton-proton collisions at a centre-of-mass energy of 13 TeV that result in final states comprising a massive vector (WorZ) boson that decays hadronically and large missing transverse momentum. The data sample was collected with the ATLAS experiment at the Large Hadron Collider from 2015 to 2018 and corresponds to an integrated luminosity of 140 fb−1. No significant excess over the Standard Model expectation is observed. Model-independent 95% confidence-level limits on the visible cross-section that range from 0.3 fb to 79.5 fb are obtained for non-Standard-Model processes. Exclusion limits are also presented for models with axion-like particles, for two-Higgs-doublet models with a pseudo-scalar mediator between the Standard Model and the dark sector, for the invisible decay of the Higgs boson and for pair-produced weakly interacting dark matter candidates.more » « less
- 
            A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    