skip to main content


Title: Relationships between radiation, clouds, and convection during DYNAMO: Radiation, Clouds, and Convection in MJO
NSF-PAR ID:
10034392
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
122
Issue:
5
ISSN:
2169-897X
Page Range / eLocation ID:
2529 to 2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate how climate, clouds, and convection change as the amount of water vapor in the atmosphere is varied by altering the saturation vapor pressure (SVP) by a constant in a one-dimensional climate model. We identify four effects of altering SVP on clouds in an Earthlike climate with distinct layers of low and high clouds. First, the anvils of high clouds get higher as SVP is increased (and vice versa) because they are bound by radiative constraints to occur at a lower temperature. The vapor pressure path above the cold anvils does not change in Earthlike climates. Second, low clouds get lower as SVP increases (and vice versa) because they are coupled to a convective boundary layer (CBL) that shallows primarily from an increase in the tropospheric static stability. The third and fourth effects follow from the first two, namely, that single-layer cloud states exist both in vapor-poor states with a merged cloud deck and vapor-rich states with an elevated cloud deck. We identify two cloud instability parameters that determine the transitions between single- and double-layer cloud regimes. Qualitatively, sufficiently vapor-poor states have a deep, diffusive layer that overlaps with a weaker convective layer (topping out at the tropopause) that cannot maintain low relative humidity in the midtroposphere through the drying of descending air, thus causing the cloud layers to merge. Sufficiently vapor-rich states lose their low clouds as the shallowing CBL drops below the lifting condensation level.

     
    more » « less
  2. null (Ed.)
    Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets. 
    more » « less
  3. null (Ed.)