skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid decline in river icings detected in Arctic Alaska: Implications for a changing hydrologic cycle and river ecosystems: River Icing Declines in Arctic Alaska
Award ID(s):
1637459 1026843
PAR ID:
10035135
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
7
ISSN:
0094-8276
Page Range / eLocation ID:
3228 to 3235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This data release includes continuous measurements of stream temperature and specific conductance from 24 sites on the Yukon River and other arctic rivers in Alaska. Measurements were collected at selected U.S. Geological Survey stream gages and in communities along major rivers. 
    more » « less
  2. Moon, T A; Thoman, R; Druckenmiller, M L (Ed.)
    This is section "h" of the Arctic chapter (chapter 5) in the BAMS State of the Climate 2022 report. 
    more » « less
  3. Abstract Seasonal sea ice impacts Arctic delta morphology by limiting wave and river influences and altering river‐to‐ocean sediment pathways. However, the long‐term effects of sea ice on delta morphology remain poorly known. To address this gap, 1D morphologic and hydrodynamic simulations were set up in Delft3D to study the 1500‐year development of Arctic deltas during the most energetic Arctic seasons: spring break‐up/freshet, summer open‐water, and autumn freeze‐up. The model focused on the deltaic clinoform (i.e., the vertical cross‐sectional view of a delta) and used a floating barge structure to mimic the effects of sea ice on nearshore waters. From the simulations we find that ice‐affected deltas form a compound clinoform morphology, that is, a coupled subaerial and subaqueous delta separated by a subaqueous platform that resembles the shallow platform observed offshore of Arctic deltas. Nearshore sea ice affects river dynamics and promotes sediment bypassing during sea ice break‐up, forming an offshore depocenter and building a subaqueous platform. A second depocenter forms closer to shore during the open‐water season at the subaerial foreset that aids in outbuilding the subaerial delta and assists in developing the compound clinoform morphology. Simulations of increased wave activity and reduced sea‐ice, likely futures under a warming Arctic climate, show that deltas may lose their shallow platform on centennial timescales by (a) sediment infill and/or (b) wave erosion. This study highlights the importance of sea ice on Arctic delta morphology and the potential morphologic transitions these high‐latitude deltas may experience as the Arctic continues to warm. 
    more » « less
  4. Abstract Arctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing. 
    more » « less