Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.
more »
« less
Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere: GRAVITY WAVE-DIURNAL TIDE INTERACTION
- Award ID(s):
- 1452137
- PAR ID:
- 10035586
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 122
- Issue:
- 4
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- 4846 to 4864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The migrating diurnal tide (DW1) is one of the dominant wave motions in the mesosphere and lower thermosphere. It plays a crucial role in neutral atmosphere and ionosphere coupling. The DW1 can vary over a range of time scales from days to years. While the long‐term variability of the DW1 is mainly attributed to the source and background atmosphere variability, the driving mechanism of short‐term DW1 variability is still openly debated. Herein the daily structure of the DW1 is extracted from observations using a novel multi‐satellite estimation technique and compared with model simulations (NOGAPS‐ALPHA and WACCM‐X). Both the observations and the models show that the day‐to‐day variability of the DW1 is a persistent and ubiquitous feature. The standard deviation peak of DW1 amplitudes, which is used to measure the maximum variability, is generally aligned with the DW1 amplitude peak. This result indicates that the day‐to‐day variability of the DW1 reflects global‐scale changes rather than local excitation of diurnal oscillation. The spatial lag‐correlation analysis of the diurnal (1,1) and (1,2) Hough modes suggests that the day‐to‐day variability of the diurnal (1,1) Hough mode is likely driven by variability in the lower atmosphere and the source of day‐to‐day variability of the (1,2) mode is uncertain. The significant correlation of the DW1 day‐to‐day variability between the NOGAPS‐ALPHA and the multi‐satellite estimation techniques also indicates that the model is capable of reproducing the DW1 structure on a daily basis.more » « less
-
An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s −1 ) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.more » « less
-
Abstract An exceptionally strong westward propagating quasi‐6‐day wave (Q6DW) with zonal wavenumber 1 in connection with the rare 2019 Southern Hemispheric Sudden Stratospheric Warming (SSW) is observed by two meteor radars at 30°S and is found to modulate and interact with the diurnal tide and gravity waves (GWs). The diurnal tide is amplified every 6 days and a prominent 21 hr child wave attributed to Q6DW‐diurnal tide nonlinear interaction occurs. Q6DW modulation on GWs is confirmed as the 4–5 day periodicity in GW variances. Simultaneously, the Q6DW appears to shift its period toward the periodicity of the modulated GW variances. Enhancement is also observed in the first results of meteor radar observed Q6DW Eliassen‐Palm flux, which may facilitate the global perturbation and persistence of this Q6DW. We conclude that the observed SSW triggered Q6DW‐tide and Q6DW‐GW interactions play an important role in coupling the lower atmospheric forcings to ionospheric variabilities.more » « less
An official website of the United States government
