Design and direct fabrication of high‐performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high‐speed 3D printing of high‐performance epoxy thermosets via a two‐stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h−1. It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two‐stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high‐performance and functional applications.
3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures.
more » « less- PAR ID:
- 10036377
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 29
- Issue:
- 30
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Nanoparticle 3D printing and sintering is a promising method to achieve freeform interconnects on compliant substrates for applications such as soft robotics and wearable healthcare devices. However, previous strategies to sinter metallic nanoparticles while preserving the soft polymer substrate are rife with problems such as cracking and low conductivity of the metallic features. In this paper, the mechanisms of cracking in nanoparticle‐based 3D printed and sintered stretchable interconnects are identified and architecture and processing strategies are demonstrated to achieve crack‐free interconnects fully embedded in thin (<100 μm in thickness) stretchable polydimethylsiloxane (PDMS) with external connectivity. Capillary forces between nanoparticles developed through rapid solvent evaporation in the colloidal ink is hypothesized to initiate cracking during drying. Additionally, the presence of oxygen promotes the removal of organic surfactants and binders in the nanoparticle ink which increases nanoparticle agglomeration, grain growth, and subsequently conductivity. An experimental step‐wise variation of the thermal/atmospheric process conditions supports this hypothesis and shows that the presence of air during a low temperature drying step reduces the capillary stress to produce crack‐free interconnects with high conductivities (up to 56% of bulk metal) while having an excellent compatibility with the underlying polymer materials. Finally, stretchable interconnects fully‐encapsulated in PDMS polymer, with 3D pillar architectures for external connectivity are demonstrated, thus also solving an important “last‐mile” problem in the packaging of stretchable electronics.
-
Abstract We report the facile synthesis and 3D printing of a series of triblock copolymers consisting of soft and hard blocks and demonstrate that alkene pendant groups of the hard block can be covalently modified. The polymers are prepared using a salenCo(III)TFA/PPNTFA binary catalyst system and 1,2‐propanediol as a chain transfer agent, providing an efficient one‐pot, two‐step strategy to tailor polymer thermal and mechanical properties. Thixotropic inks suitable for direct ink write printing were formulated by dissolving the block copolymers in organic solvent and dispersing NaCl particles. After printing, porous structures were produced by removing solvent and NaCl with water to give printed structures with surfaces that could be modified via UV‐initiated thiol‐ene click reactions. Alternatively, a tetra‐thiol could be incorporated into the ink and used for cross‐linking to give objects with high solvent resistance and selective degradability.
-
Abstract We report the facile synthesis and 3D printing of a series of triblock copolymers consisting of soft and hard blocks and demonstrate that alkene pendant groups of the hard block can be covalently modified. The polymers are prepared using a salenCo(III)TFA/PPNTFA binary catalyst system and 1,2‐propanediol as a chain transfer agent, providing an efficient one‐pot, two‐step strategy to tailor polymer thermal and mechanical properties. Thixotropic inks suitable for direct ink write printing were formulated by dissolving the block copolymers in organic solvent and dispersing NaCl particles. After printing, porous structures were produced by removing solvent and NaCl with water to give printed structures with surfaces that could be modified via UV‐initiated thiol‐ene click reactions. Alternatively, a tetra‐thiol could be incorporated into the ink and used for cross‐linking to give objects with high solvent resistance and selective degradability.
-
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
Abstract Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology.