skip to main content


Title: A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery
Abstract

The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.

 
more » « less
NSF-PAR ID:
10153317
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m2). The energy of the pulse application primarily dictated cell viability, with Mg2+-based buffers expanding the reversible electroporation range. The enhancement of viability with Mg2+-based buffers led to the hypothesis that this enhancement is due to ATPase activation via re-establishing ionic homeostasis. We show preliminary evidence for this mechanism by demonstrating that the enhanced viability is eliminated by introducing lidocaine, an ATPase inhibitor. However, Mg2+also hinders eTE compared to K+-based buffers. Collectively, the results demonstrate that the rational selection of pulsing conditions and buffer compositions are critical for the design of electroporation protocols to maximize viability and eTE.

     
    more » « less
  2. Abstract

    Drug delivery and cell transplantation require minimally invasive deployment strategies such as injection through clinically relevant high‐gauge needles. Supramolecular hydrogels comprising dodecyl‐modified hydroxypropylmethylcellulose and poly(ethylene glycol)‐block‐poly(lactic acid) have been previously demonstrated for the delivery of drugs and proteins. Here, it is demonstrated that the rheological properties of these hydrogels allow for facile injectability, an increase of cell viability after injection when compared to cell viabilities of cells injected in phosphate‐buffered saline, and homogeneous cell suspensions that do not settle. These hydrogels are injected at 1 mL min−1with pressures less than 400 kPa, despite the solid‐like properties of the gel when at rest. The cell viabilities immediately after injection are greater than 86% for adult human dermal fibroblasts, human umbilical vein cells, smooth muscle cells, and human mesenchymal stem cells. Cells are shown to remain suspended and proliferate in the hydrogel at the same rate as observed in cell media. The work expands on the versatility of these hydrogels and lays a foundation for the codelivery of drugs, proteins, and cells.

     
    more » « less
  3. Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.

     
    more » « less
  4. Abstract

    A surge of research in intracellular delivery technologies is underway with the increased innovations in cell‐based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high‐throughput delivery that is critical for providing the desired cell quantity for cell‐based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and demonstrates to deliver a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble‐based sonoporation methods usually require special contrast agents. Bubble‐based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non‐bubble‐based sonoporation mechanisms are under development. This review will cover both the bubble‐based and non‐bubble‐based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.

     
    more » « less
  5. null (Ed.)
    Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage. 
    more » « less