- PAR ID:
- 10037671
- Date Published:
- Journal Name:
- 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns. In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss some promising defense directions.more » « less
-
Even though extensive studies have developed various eco-driving strategies for vehicle platoon to travel on urban roads with traffic signals, most of them focus on vehicle-level trajectory planning or speed advisory rather than real-time platoon-level closed-loop control. In addition, majority of existing efforts neglect the traffic and vehicle dynamic uncertainties to avoid the modeling and solution complexity. To make up these research gaps, this study develops a system optimal vehicle platooning control for eco-driving (SO-ED), which can guide a mixed flow platoon to smoothly run on the urban roads and pass the signalized intersections without sudden deceleration or red idling. The SO-ED is mathematically implemented by a hybrid model predictive control (MPC) system, including three MPC controllers and an MINLP platoon splitting switching signal. Based on the features of the system, this study uses active set method to solve the large-scale MPC controllers in real time. The numerical experiments validate the merits of the proposed SO-ED in smoothing the traffic flow and reducing energy consumption and emission at urban signalized intersections.more » « less
-
Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various connected and automated vehicle solutions around the globe. Wireless communication technologies such as the dedicated short-range communication protocol are enabling information exchange between vehicles and infrastructure. This research paper introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. Trajectory-Driven Optimization for Automated Driving provides an optimal trajectory for automated vehicles based on current vehicle position, prevailing traffic, and signal status on the corridor. All inputs are used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. The concept evaluation through microsimulation reveals that, even with low market penetration (i.e., less than 10%), the technology reduces overall travel time of the corridor by 2%. Further increase in market penetration produces travel time and fuel consumption reductions of up to 19.5% and 22.5%, respectively.more » « less
-
Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al. 2021), which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level, real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control method with an online routing algorithm to realize collision-free control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time–space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 second on an ordinary personal computer.more » « less
-
Abstract This study presents the Wireless Charging Utility Maximization (WCUM) framework, which aims to maximize the utility of Wireless Charging Units (WCUs) for electric vehicle (EV) charging through the optimal WCU deployment at signalized intersections. Furthermore, the framework aims to minimize the control delay at all signalized intersections of the network. The framework consists of a two‐step optimization formulation, a dynamic traffic assignment model to calculate the user equilibrium, a traffic microsimulator to formulate the objective functions, and a global Mixed Integer Non‐Linear Programming (MINLP) optimization solver. An optimization problem is formulated for each intersection, and another for the entire network. The performance of the WCUM framework is tested using the Sioux Falls network. We perform a comparative study of 12 global MINLP solvers with a case study. Based on solution quality and computation time, we choose the Couenne solver for this framework.