skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Environment-Independent Task Specifications via GLTL
We propose a new task-specification language for Markov decision processes that is designed to be an improvement over reward functions by being environment independent. The language is a variant of Linear Temporal Logic (LTL) that is extended to probabilistic specifications in a way that permits approximations to be learned in finite time. We provide several small environments that demonstrate the advantages of our geometric LTL (GLTL) language and illustrate how it can be used to specify standard reinforcement-learning tasks straightforwardly.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Often times, we specify tasks for a robot using tem- poral language that can also span different levels of abstraction. The example command “go to the kitchen before going to the second floor” contains spatial abstraction, given that “floor” consists of individual rooms that can also be referred to in isolation (“kitchen”, for example). There is also a temporal ordering of events, defined by the word “before”. Previous works have used Linear Temporal Logic (LTL) to interpret temporal language (such as “before”), and Abstract Markov Decision Processes (AMDPs) to interpret hierarchical abstractions (such as “kitchen” and “second floor”), separately. To handle both types of commands at once, we introduce the Abstract Product Markov Decision Process (AP-MDP), a novel approach capable of representing non-Markovian reward functions at different levels of abstractions. The AP-MDP framework translates LTL into its corresponding automata, creates a product Markov Decision Process (MDP) of the LTL specification and the environment MDP, and decomposes the problem into subproblems to enable efficient planning with abstractions. AP-MDP performs faster than a non-hierarchical method of solving LTL problems in over 95% of tasks, and this number only increases as the size of the en- vironment domain increases. We also present a neural sequence- to-sequence model trained to translate language commands into LTL expression, and a new corpus of non-Markovian language commands spanning different levels of abstraction. We test our framework with the collected language commands on a drone, demonstrating that our approach enables a robot to efficiently solve temporal commands at different levels of abstraction. 
    more » « less
  2. Context Linear Temporal Logic (LTL) has been used widely in verification. Its importance and popularity have only grown with the revival of temporal logic synthesis, and with new uses of LTL in robotics and planning activities. All these uses demand that the user have a clear understanding of what an LTL specification means. Inquiry Despite the growing use of LTL, no studies have investigated the misconceptions users actually have in understanding LTL formulas. This paper addresses the gap with a first study of LTL misconceptions. Approach We study researchers’ and learners’ understanding of LTL in four rounds (three written surveys, one talk-aloud) spread across a two-year timeframe. Concretely, we decompose “understanding LTL” into three questions. A person reading a spec needs to understand what it is saying, so we study the mapping from LTL to English. A person writing a spec needs to go in the other direction, so we study English to LTL. However, misconceptions could arise from two sources: a misunderstanding of LTL’s syntax or of its underlying semantics. Therefore, we also study the relationship between formulas and specific traces. Knowledge We find several misconceptions that have consequences for learners, tool builders, and designers of new property languages. These findings are already resulting in changes to the Alloy modeling language. We also find that the English to LTL direction was the most common source of errors; unfortunately, this is the critical “authoring” direction in which a subtle mistake can lead to a faulty system. We contribute study instruments that are useful for training learners (whether academic or industrial) who are getting acquainted with LTL, and we provide a code book to assist in the analysis of responses to similar-style questions. Grounding Our findings are grounded in the responses to our survey rounds. Round 1 used Quizius to identify misconceptions among learners in a way that reduces the threat of expert blind spots. Rounds 2 and 3 confirm that both additional learners and researchers (who work in formal methods, robotics, and related fields) make similar errors. Round 4 adds deep support for our misconceptions via talk-aloud surveys. Importance This work provides useful answers to two critical but unexplored questions: in what ways is LTL tricky and what can be done about it? Our survey instruments can serve as a starting point for other studies. 
    more » « less
  3. Lal, A ; Tonetta, S. (Ed.)
    Reactive synthesis holds the promise of generating automatically a verifiably correct program from a high-level specification. A popular such specification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing programs from general LTL formulas, which relies on first constructing a game arena and then solving the game, does not scale to large instances. The specifications from practical applications are usually large conjunctions of smaller LTL formulas, which inspires existing compositional synthesis approaches to take advantage of this structural information. The main challenge here is that they solve the game only after obtaining the game arena, the most computationally expensive part in the procedure. In this work, we propose a compositional synthesis technique to tackle this difficulty by synthesizing a program for each small conjunct separately and composing them one by one. While this approach does not work for general LTL formulas, we show here that it does work for Safety LTL formulas, a popular and important fragment of LTL. While we have to compose all the programs of small conjuncts in the worst case, we can prune the intermediate programs to make later compositions easier and immediately conclude unrealizable as soon as some part of the specification is found unrealizable. By comparing our compositional approach with a portfolio of all other approaches, we observed that our approach was able to solve a notable number of instances not solved by others. In particular, experiments on scalable conjunctive benchmarks showed that our approach scale well and significantly outperform current Safety LTL synthesis techniques. We conclude that our compositional approach is an important contribution to the algorithmic portfolio of Safety LTL synthesis. 
    more » « less
  4. Goal-conditioned reinforcement learning (RL) is a powerful approach for learning general-purpose skills by reaching diverse goals. However, it has limitations when it comes to task-conditioned policies, where goals are specified by temporally extended instructions written in the Linear Temporal Logic (LTL) formal language. Existing approaches for finding LTL-satisfying policies rely on sampling a large set of LTL instructions during training to adapt to unseen tasks at inference time. However, these approaches do not guarantee generalization to out-of-distribution LTL objectives, which may have increased complexity. In this paper, we propose a novel approach to address this challenge. We show that simple goal-conditioned RL agents can be instructed to follow arbitrary LTL specifications without additional training over the LTL task space. Unlike existing approaches that focus on LTL specifications expressible as regular expressions, our technique is unrestricted and generalizes to ω-regular expressions. Experiment results demonstrate the effectiveness of our approach in adapting goal-conditioned RL agents to satisfy complex temporal logic task specifications zero-shot. 
    more » « less
  5. null (Ed.)
    Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that complies with desired properties expressed in LTL. Unfortunately it has been proved to be too difficult computationally to perform full LTL synthesis. There have been two success stories with LTL synthesis, both having to do with the form of the specification. The first is the GR(1) approach: use safety conditions to determine the possible transitions in a game between the environment and the agent, plus one powerful notion of fairness, Generalized Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace temporal synthesis, with LTLf (LTL on finite traces) as the specification language. In this paper we take these two lines of work and bring them together. We first study the case in which we have an LTLf agent goal and a GR(1) assumption. We then add to the framework safety conditions for both the environment and the agent, obtaining a highly expressive yet still scalable form of LTL synthesis. 
    more » « less