skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environment-Independent Task Specifications via GLTL
We propose a new task-specification language for Markov decision processes that is designed to be an improvement over reward functions by being environment independent. The language is a variant of Linear Temporal Logic (LTL) that is extended to probabilistic specifications in a way that permits approximations to be learned in finite time. We provide several small environments that demonstrate the advantages of our geometric LTL (GLTL) language and illustrate how it can be used to specify standard reinforcement-learning tasks straightforwardly.  more » « less
Award ID(s):
1643413
PAR ID:
10037672
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
arXiv.org
ISSN:
2331-8422
Page Range / eLocation ID:
arXiv:1704.04341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Often times, we specify tasks for a robot using tem- poral language that can also span different levels of abstraction. The example command “go to the kitchen before going to the second floor” contains spatial abstraction, given that “floor” consists of individual rooms that can also be referred to in isolation (“kitchen”, for example). There is also a temporal ordering of events, defined by the word “before”. Previous works have used Linear Temporal Logic (LTL) to interpret temporal language (such as “before”), and Abstract Markov Decision Processes (AMDPs) to interpret hierarchical abstractions (such as “kitchen” and “second floor”), separately. To handle both types of commands at once, we introduce the Abstract Product Markov Decision Process (AP-MDP), a novel approach capable of representing non-Markovian reward functions at different levels of abstractions. The AP-MDP framework translates LTL into its corresponding automata, creates a product Markov Decision Process (MDP) of the LTL specification and the environment MDP, and decomposes the problem into subproblems to enable efficient planning with abstractions. AP-MDP performs faster than a non-hierarchical method of solving LTL problems in over 95% of tasks, and this number only increases as the size of the en- vironment domain increases. We also present a neural sequence- to-sequence model trained to translate language commands into LTL expression, and a new corpus of non-Markovian language commands spanning different levels of abstraction. We test our framework with the collected language commands on a drone, demonstrating that our approach enables a robot to efficiently solve temporal commands at different levels of abstraction. 
    more » « less
  2. Goal-conditioned reinforcement learning (RL) is a powerful approach for learning general-purpose skills by reaching diverse goals. However, it has limitations when it comes to task-conditioned policies, where goals are specified by temporally extended instructions written in the Linear Temporal Logic (LTL) formal language. Existing approaches for finding LTL-satisfying policies rely on sampling a large set of LTL instructions during training to adapt to unseen tasks at inference time. However, these approaches do not guarantee generalization to out-of-distribution LTL objectives, which may have increased complexity. In this paper, we propose a novel approach to address this challenge. We show that simple goal-conditioned RL agents can be instructed to follow arbitrary LTL specifications without additional training over the LTL task space. Unlike existing approaches that focus on LTL specifications expressible as regular expressions, our technique is unrestricted and generalizes to ω-regular expressions. Experiment results demonstrate the effectiveness of our approach in adapting goal-conditioned RL agents to satisfy complex temporal logic task specifications zero-shot. 
    more » « less
  3. null (Ed.)
    Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that complies with desired properties expressed in LTL. Unfortunately it has been proved to be too difficult computationally to perform full LTL synthesis. There have been two success stories with LTL synthesis, both having to do with the form of the specification. The first is the GR(1) approach: use safety conditions to determine the possible transitions in a game between the environment and the agent, plus one powerful notion of fairness, Generalized Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace temporal synthesis, with LTLf (LTL on finite traces) as the specification language. In this paper we take these two lines of work and bring them together. We first study the case in which we have an LTLf agent goal and a GR(1) assumption. We then add to the framework safety conditions for both the environment and the agent, obtaining a highly expressive yet still scalable form of LTL synthesis. 
    more » « less
  4. We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and as an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low-sample regimes. 
    more » « less
  5. Context Linear Temporal Logic (LTL) has been used widely in verification. Its importance and popularity have only grown with the revival of temporal logic synthesis, and with new uses of LTL in robotics and planning activities. All these uses demand that the user have a clear understanding of what an LTL specification means. Inquiry Despite the growing use of LTL, no studies have investigated the misconceptions users actually have in understanding LTL formulas. This paper addresses the gap with a first study of LTL misconceptions. Approach We study researchers’ and learners’ understanding of LTL in four rounds (three written surveys, one talk-aloud) spread across a two-year timeframe. Concretely, we decompose “understanding LTL” into three questions. A person reading a spec needs to understand what it is saying, so we study the mapping from LTL to English. A person writing a spec needs to go in the other direction, so we study English to LTL. However, misconceptions could arise from two sources: a misunderstanding of LTL’s syntax or of its underlying semantics. Therefore, we also study the relationship between formulas and specific traces. Knowledge We find several misconceptions that have consequences for learners, tool builders, and designers of new property languages. These findings are already resulting in changes to the Alloy modeling language. We also find that the English to LTL direction was the most common source of errors; unfortunately, this is the critical “authoring” direction in which a subtle mistake can lead to a faulty system. We contribute study instruments that are useful for training learners (whether academic or industrial) who are getting acquainted with LTL, and we provide a code book to assist in the analysis of responses to similar-style questions. Grounding Our findings are grounded in the responses to our survey rounds. Round 1 used Quizius to identify misconceptions among learners in a way that reduces the threat of expert blind spots. Rounds 2 and 3 confirm that both additional learners and researchers (who work in formal methods, robotics, and related fields) make similar errors. Round 4 adds deep support for our misconceptions via talk-aloud surveys. Importance This work provides useful answers to two critical but unexplored questions: in what ways is LTL tricky and what can be done about it? Our survey instruments can serve as a starting point for other studies. 
    more » « less