skip to main content

Title: A new 3/2-approximation algorithm for the b-edge cover problem
We describe a 3/2-approximation algorithm, \lse, for computing a b-edgecover of minimum weight in a graph with weights on the edges. The b-edgecover problem is a generalization of the better-known Edge Cover problem in graphs, where the objective is to choose a subset C of edges in the graph such that at least a specified number b(v) of edges in C are incident on each vertex v. In the weighted b-edgecover problem, we minimize the sum of the weights of the edges in C. We prove that the Locally Subdominant edge (LSE) algorithm computes the same b-edge cover as the one obtained by the Greedy algorithm for the problem. However, the Greedy algorithm requires edges to be sorted by their effective weights, and these weights need to be updated after each iteration. These requirements make the Greedy algorithm sequential and impractical for massive graphs. The LSE algorithm avoids the sorting step, and is amenable for parallelization. We implement the algorithm on a serial machine and compare its performance against a collection of approximation algorithms for the b-edge cover problem. Our results show that the algorithm is 3 to 5 times faster than the Greedy algorithm on a serial processor. The approximate edge covers obtained by the LSE algorithm have weights greater by at most 17% of the optimal weight for problems where we could compute the latter. We also investigate the relationship between the b-edge cover and the b-matching problems, show that the latter has a faster implementation since edge weights are static in this algorithm, and obtain a heuristic solution for the former from the latter.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the b-edgecover problem. A b-edgecover of minimum weight in a graph is a subset $C$ of its edges such that at least a specified number $b(v)$ of edges in $C$ is incident on each vertex $v$, and the sum of the edge weights in $C$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$-approximation guarantees in the worst-case for this problem, but these algorithms have limited parallelism. Hence we design two new $2$-approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a b-edgecover to that of finding a b'-matching, by exploiting the relationship between these subgraphs in an approximation context. The LSE-NW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSE-NW algorithms compute the same b-edgecover with at most twice the weight of the minimum weight edge cover. In practice, the $2$-approximation and $3/2$-approximation algorithms compute edge covers of weight within $10\%$ the optimal. We implement three of the approximation algorithms, MCE, LSE, and LSE-NW on shared memory multi-core machines, including an Intel Xeon and an IBM Power8 machine with 8 TB memory. The MCE algorithm is the fastest of these by an order of magnitude or more. It computes an edge cover in a graph with billions of edges in $20$ seconds using two hundred threads on the IBM Power8. We also show that the parallel depth and work can be bounded for the Suitor and b-Suitor algorithms when edge weights are random. 
    more » « less
  2. We consider the maximum vertex-weighted matching problem (MVM), in which non-negative weights are assigned to the vertices of a graph, and the weight of a matching is the sum of the weights of the matched vertices. Although exact algorithms for MVM are faster than exact algorithms for the maximum edge-weighted matching problem, there are graphs on which these exact algorithms could take hundreds of hours. For a natural number k, we design a k/(k + 1)approximation algorithm for MVM on non-bipartite graphs that updates the matching along certain short paths in the graph: either augmenting paths of length at most 2k + 1 or weight-increasing paths of length at most 2k. The choice of k = 2 leads to a 2/3-approximation algorithm that computes nearly optimal weights fast. This algorithm could be initialized with a 2/3-approximate maximum cardinality matching to reduce its runtime in practice. A 1/2-approximation algorithm may be obtained using k = 1, which is faster than the 2/3-approximation algorithm but it computes lower weights. The 2/3-approximation algorithm has time complexity O(Δ2m) while the time complexity of the 1/2-approximation algorithm is O(Δm), where m is the number of edges and Δ is the maximum degree of a vertex. Results from our serial implementations show that on average the 1/2-approximation algorithm runs faster than the Suitor algorithm (currently the fastest 1/2-approximation algorithm) while the 2/3-approximation algorithm runs as fast as the Suitor algorithm but obtains higher weights for the matching. One advantage of the proposed algorithms is that they are well-suited for parallel implementation since they can process vertices to match in any order. The 1/2- and 2/3-approximation algorithms have been implemented on a shared memory parallel computer, and both approximation algorithms obtain good speedups, while the former algorithm runs faster on average than the parallel Suitor algorithm. Care is needed to design the parallel algorithm to avoid cyclic waits, and we prove that it is live-lock free. 
    more » « less
  3. We describe two new 3/2-approximation algorithms and a new 2-approximation algorithm for the minimum weight edge cover problem in graphs. We show that one of the 3/2-approximation algorithms, the Dual cover algorithm, computes the lowest weight edge cover relative to previously known algorithms as well as the new algorithms reported here. The Dual cover algorithm can also be implemented to be faster than the other 3/2-approximation algorithms on serial computers. Many of these algorithms can be extended to solve the 6-Edge cover problem as well. We show the relation of these algorithms to the K-Nearest Neighbor graph construction in semi-supervised learning and other applications. 
    more » « less
  4. We study the stochastic vertex cover problem. In this problem, G = (V, E) is an arbitrary known graph, and G⋆ is an unknown random subgraph of G where each edge e is realized independently with probability p. Edges of G⋆ can only be verified using edge queries. The goal in this problem is to find a minimum vertex cover of G⋆ using a small number of queries. Our main result is designing an algorithm that returns a vertex cover of G⋆ with size at most (3/2+є) times the expected size of the minimum vertex cover, using only O(n/є p) non-adaptive queries. This improves over the best-known 2-approximation algorithm by Behnezhad, Blum and Derakhshan [SODA’22] who also show that Ω(n/p) queries are necessary to achieve any constant approximation. Our guarantees also extend to instances where edge realizations are not fully independent. We complement this upperbound with a tight 3/2-approximation lower bound for stochastic graphs whose edges realizations demonstrate mild correlations. 
    more » « less
  5. We consider the Max-3-Section problem, where we are given an undirected graph G = (V, E) equipped with non-negative edge weights w : E → R+ and the goal is to find a partition of V into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g., Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of 0.795, that improves upon the previous best known approximation of 0.673. The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result. 
    more » « less